皮膚がん診療ガイドライン第 4 版 メラノーマ診療ガイドライン 2025

公益社団法人日本皮膚科学会

一般社団法人日本皮膚悪性腫瘍学会

皮膚がん診療ガイドライン策定委員会(メラノーマ診療ガイドライングループ)

福島 聡 伊東孝通 浅井 純 井垣 浩 田中亮多 並川健二郎 林 礼人 皆川 茜 宮川卓也 宮下 梓 緒方 大 奥村真央 依藤寛之 11 並木 剛 2 橋本弘規 肥田時征 平田岳郎 14 前田 拓 2 松澤高光 6 柳 輝希 17 杉本香苗 8 木村絵美 8 古賀弘志 19

内 博史20 宮垣朝光21 中村泰大22 猪爪降史16

目 次 第1章 メラノーマ診療ガイドラインについて一 1 本ガイドラインの目的― 3151 2 改訂の目的---3152 本ガイドラインの適用が想定される対象者、および想定される利用対象者一 3 - 3152 4 本ガイドラインを使用する場合の注意事項--3152 改訂ガイドラインの特徴-5 -3152 6 エビデンス収集方法(文献検索)-- 3153 システマティックレビューの方法― -31547.1 個々の報告に対する評価 (STEP 1)— -3154エビデンス総体の総括 (STEP 2)ー - 3154 定量的システマティックレビュー (メタアナリシス) —— - 3154 7.4定性的システマティックレビュー-- 3154 システマティックレビューレポートの作成―― - 3154

- 1) 熊本大学皮膚病態治療再建学講座(福島 聡:メラノーマ 診療ガイドライン代表委員)
- 2) 九州大学皮膚科
- 3) 京都府立医科大学皮膚科
- 4) 国立がん研究センター中央病院放射線治療科
- 5) 筑波大学皮膚科
- 6) 国立がん研究センター中央病院皮膚腫瘍科
- 7) 横浜市立大学形成外科
- 8) 信州大学皮膚科
- 9) 東京女子医科大学附属足立医療センター皮膚科
- 10) 東京大学皮膚科
- 11) 大阪公立大学皮膚科
- 12) 東京医科歯科大学皮膚科
- 13) 札幌医科大学医学部皮膚科学講座
- 14) 大阪大学大学院医学系研究科放射線治療学教室
- 15) 北海道大学形成外科
- 16) 千葉大学皮膚科
- 17) 琉球大学大学院医学研究科皮膚科学講座
- 18) メラノーマ患者会 Over The Rainbow
- 19) 北戸田アルプス皮フ科
- 20) 国立病院機構九州がんセンター皮膚腫瘍科
- 21) 聖マリアンナ医科大学皮膚科
- 22) 埼玉医科大学国際医療センター皮膚腫瘍科・皮膚科 (統括 委員長)

8	推奨決定の方法	3154
8.1	冬 C ① 担当考内での検討	3154
8.2	推奨決定会議————————————————————————————————————	
	作成過程における CQ 番号の変更について―――――	3133
9	作成過程におけるCQ番号の変更について	3156
10	ガイドライン改訂作業の実際	3156
10.1		
10.2	全体会議(及層かん診療カイドワイン全グループでの会議) ————— 予備会議—————	3156
10.3	パネル会議	3156
11	外部評価およびパブリックコメント,専門家コメント―――――	
12	学後の以前と目指すべき以前のあり万――――――――――――――――――――――――――――――――――――	3150
13	出版後のガイドラインのモニタリング――――――	3157
14	資金	
15	利益相反	3157
15.1	利益相反の申告	3157
15.2	COIへの対応と対策	3157
第2章	今後の改訂と目指すべき改訂のあり方 出版後のガイドラインのモニタリング 資金 利益相反 利益相反の申告 COI への対応と対策 メラノーマ総論 メラノーマの疫学と病因 メラノーマの疫学	
	クノノーマ 秘囲 マース 京学 L 古日	3130
1	メフノーマの投字と病因――――――――――――――――――――――――――――――――――――	3158
1.1	メラノーマの疫学	3158
1.2	メラノーマの投字 メラノーマの病因, 危険因子 メラノーマの診断 肉眼による視診 ダーモスコピー	3162
2	メラノーマの診断―――――	3163
2.1	肉眼による視診	3163
2.2	ダーエフコピー	2162
	少した人口と 一	3103
2.3	生検 	3163
2.4	病理診断————————————————————————————————————	3164
2.5	スクリーニング画像検査――――――――――――――――――――――――――――――――――――	3164
3	病期と治療方針,経過観察方針	3165
3.1	病期別の治療アルゴリズム――――――――――――――――――――――――――――――――――――	3165
3.2	病期別の経過組察指針————————————————————————————————————	3171
3.3	から かた 一直 20 一方 1 日本 1	2172
	おわりに	3173
4	于州景法	3173
4.1	はじめに――――	3173
4.2	- 原発果切除 - 転移果切除の適応と且的	
4.3	原発巣切除	3174
4.4	オリゴ転移や in-transit 転移を対象とした転移巣切除 ————	3176
4.5	おわりに	3176
5	手術療法:センチネルリンパ節生検・領域リンパ節郭清――――	
5.1	概説————————————————————————————————————	3177
5.2	センチネルリンパ節生検(SLNB)	3177
5.3	領域リンパ節郭清 (CLND) ————————————————————————————————————	3180
6	放射線療法	3182
6.1	はがめに―――――	3182
6.2	臨床的に明らかな領域リンパ節転移に対する術後補助放射線療法――――	
	医 86 円 12 44 44 7 1日 77 94 44 46 46 46 47 47 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	2104
6.3	原発巣に対する根治的放射線療法――――――――――――――――――――――――――――――――――――	3184
6.4	特殊な放射線を用いた根治的放射線療法——————	3185
6.5	緩和的放射線療法 放射線療法の今後の展望	3186
6.6	放射線療法の今後の展望	3186
6.7	おわりに―――	3187
7	周術期薬物療法————	3187
7.1	はじめに	
	Interferon	3107
7.2	Interieron	318/
7.3	分子標的薬————————————————————————————————————	
7.4	免疫チェックポイント阻害薬	
7.5	術前補助療法—————	
7.6	周術期薬物療法の課題――――――――――――――――――――――――――――――――――――	3192
1	· · · · · · · · · · · · · · · · · · ·	v -

7.7	おわりに	3194
8	進行期治療:殺細胞性抗がん剤と分子標的薬. 有害事象, 脳転移治療などを含めて――――	3194
8.1		3194
8.2	殺細胞性抗がん剤	3194
8.3	BRAF ^{V600E/K} 遺伝子変異を有する進行期メラノーマに対する分子標的薬 ——————	3195
8.4	メラノーマ脳転移に対する治療	3197
8.5	課題—————	3198
8.6	おわりに	3200
9	進行期治療:免疫チェックポイント阻害薬. 有害事象, 脳転移治療などを含めて――――	3200
9.1	免疫チェックポイント阻害薬とは――――――――――――――――――――――――――――――――――――	3200
9.2	進行期メラノーマに対する ICI	3201
9.3	脳転移	
9.4	課題————————————————————————————————————	3205
9.5		3208
10	免疫チェックポイント阻害薬と分子標的薬の併用療法および逐次投与————	3208
10.1	免疫チェックポイント阻害薬と分子標的薬の併用療法および逐次投与———— 併用療法————————————————————————————————————	3208
10.2	逐次投与	3209
10.3	おわりに	
第3章	メラノーマ診療ガイドライン クリニカルクエスチョン (CQ) と推奨	3213
CQ1	爪部浸潤性メラノーマに対する指趾切断術は勧められるか?――――	3213
CQ2	センチネルリンパ節(SLN)転移陽性例に対して	
	早期リンパ節郭清を行うことは勧められるか?――――	3216
CQ3	根治切除後の BRAF 変異陰性メラノーマに対する術後補助療法として	
	抗 PD-1 抗体は勧められるか?	3218
CQ4	根治切除後の BRAF 変異陽性メラノーマに対する術後補助療法は	
	BRAF/MEK 阻害薬と抗 PD-1 抗体のいずれが勧められるか? ———————	3221
CQ5	臨床的に明らかな領域リンパ節転移を有するメラノーマに対して	
	術前補助療法は勧められるか?	3223
CQ6	領域リンパ節郭清を行った皮膚メラノーマに術後放射線療法は勧められるか?――――	3227
CQ7	根治切除不能な BRAF 変異陰性メラノーマの一次治療は抗 PD-1 抗体,	
	抗 PD-1 抗体 + 抗 CTLA-4 抗体のいずれが勧められるか? ————————	3229
CQ8	根治切除不能な BRAF 変異陽性例の一次治療は BRAF/MEK 阻害薬,	
	抗 PD-1 抗体, ないしは抗 PD-1 抗体 + 抗 CTLA-4 抗体併用療法のいずれが勧められるか? -	3232
CQ9	脳転移に対して,BRAF/MEK 阻害薬,抗 PD-1 抗体,	
	抗 PD-1 抗体+抗 CTLA-4 抗体は勧められるか? ———————	3236
CQ10)BRAF/MEK 阻害薬や免疫チェックポイント阻害薬に	
	が 放射線療法を併用することは勧められるか? ————————————————————————————————————	3239
CQ1	Ⅰ BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で	
	病勢コントロールが得られた際に投薬を中止することは勧められるか?―――――	3241
CQ1	2 BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で増悪した際に	
	投薬を継続することは勧められるか? —	3245
文献	3248	
1		

第1章 メラノーマ診療ガイドラインについて

1. 本ガイドラインの目的

メラノーマは進行した場合,治療に困難を伴う疾患であるが,その克服を目指して診断や治療に関するさまざまな研究成果が近年多数報告されている.これらの研究成果をもとに本邦におけるメラノーマ診療の現状に即した診療指針の策定が必要である.本ガイドラインでは,本邦における以下に示すアウトカムを改善

することを目的とした. ①原発巣手術後の日常生活動作 (ADL), ②領域リンパ節郭清およびリンパ節郭清範囲の適切性, ③手術療法 (根治切除, 転移巣切除)後の予後 (局所再発, 無病生存期間, 全生存期間), ④進行期治療例の予後 (奏効率, 無増悪生存期間, 全生存期間), ⑤費用対効果. 本ガイドラインは, メラノーマのスクリーニングから, 診断・治療に関わる医療従事者及び市民に診療指針を提供し, メラノーマ患者やその疑いのある人々に対する効果的・効率的な診療を体系化するとともに, 本邦における効率的な保険医療

を確立することを目指している.

2. 改訂の目的

本邦のメラノーマ診療ガイドラインはメラノーマ. 有棘細胞癌, 乳房外パジェット病, 基底細胞癌を4つ の皮膚悪性腫瘍を取り扱う「皮膚悪性腫瘍診療ガイド ライン」¹⁾として 2007 年に出版された. 以後 2015 年に 第2版2,2019年に第3版3.4)として改訂され出版され ている。メラノーマに関しては、今日までダーモスコ ピーやセンチネルリンパ節生検などの新たな診断技術 や手技の導入による低侵襲化、術後補助療法や進行期 治療としての新規薬物療法の導入などが相次いでお り、実臨床に即した指針の提供のためには、数年単位 でのガイドライン改訂が必要である. 今回も第3版の 出版より約5年を経て、2024年に第4版を出版するこ ととなり、日本皮膚科学会より委嘱をうけた関係学会 や各領域の第一人者からなる策定委員によって、メラ ノーマについての多方面からの文献を十分に検討し. 体系化された指針を作成することに努めた.

3. 本ガイドラインの適用が想定される対象者, および想定される利用対象者

本ガイドラインはメラノーマの存在が疑われる患 者,メラノーマと診断された患者を対象集団とした. 第3版では皮膚以外の臓器原発のメラノーマはガイド ラインの適用外とされていたが、本ガイドラインでは 全てのメラノーマ患者を対象とした. また近年, 欧米 人と東アジア人ではメラノーマの病型の頻度が異な り、薬物療法の有効性も異なることが明らかになって きているため、とくに東アジア人患者について検討し た. ただし, melanoma in a congenital nevus や desmoplastic melanoma 等の稀な病型のメラノーマにつ いては対象外とした. uveal melanoma, melanoma in a blue nevus, malignant Spitz tumor, 小児のメラノー マについては文献検索対象に含めたが、結果として十 分な情報は得られなかったため、本ガイドラインの推 奨があてはまるとは言えないことに注意が必要であ る. 対象の性別, 病期や重症度, 合併症の有無などに ついては限定せず、臨床現場で広く遭遇すると思われ る患者状況を想定して作成した. なお, 想定される利 用者は、東アジア人メラノーマ患者およびその診療に あたる医療者および関係者, すなわち皮膚科医, 腫瘍 内科医, 形成外科医, 放射線科医, 看護師, 薬剤師,

その他の医療従事者を含む医療チーム, 医療政策決定者である. また, 想定される利用施設としては, 一次医療施設(プライマリケア), 二次医療施設(救急を含む)とした. また, 一般臨床医がメラノーマに効率的かつ適切に対処することの一助となることも配慮した. さらには, メラノーマやメラノーマが疑われる患者・家族をはじめ, メラノーマ診療に関心を有する国内外の医療・福祉・教育・保険・出版・報道等の関係者, 他分野のガイドライン作成者, メラノーマ診療に関わる行政・立法・司法機関等においても利用が想定される. 特にメラノーマの患者・家族にはメラノーマの理解の一助となり, 医療従事者と医療を受ける立場の方々の相互の理解・納得のもとに, より好ましい医療が選択され, 実行されることを期待する.

4. 本ガイドラインを使用する場合の注意事項

ガイドラインは作成時点での最も標準的な診療指針であるが、実際の診療行為を強制するものではなく、最終的には施設の状況(人員、医療従事者の経験、設備・機器など)や個々の患者の個別性を加味して、対処法を患者・家族と、診療にあたる医師やその他の医療者等との間で、十分な話し合いの上で決定すべきである。また、ガイドラインに記載されている内容に関しては、日本皮膚科学会が責任を負うものとするが、診療結果についての責任は主治医、担当医等の直接の診療担当者に帰属すべきもので、日本皮膚科学会およびメラノーマ診療ガイドライン策定委員会は責任を負わない。なお、本文中の薬剤および薬剤使用量などは、一部本邦で承認されていない海外臨床試験での用量を含んでいる。

5. 改訂ガイドラインの特徴

メラノーマの診断・治療は急速に進歩を遂げており、また治療手段の多様性も増していることから、それらを包括的に取り入れ、臨床現場に柔軟な選択肢が担保されるようにガイドラインの改訂を行った。本ガイドラインの改訂にあたっては皮膚がん診療ガイドライン策定委員会が設置され、メラノーマグループは7つの作成グループ(メラノーマグループ、有棘細胞癌グループ、乳房外パジェット病グループ、基底細胞癌グループ、皮膚血管肉腫グループ、メルケル細胞癌グループ、皮膚リンパ腫グループ)の一翼を担っている。策定委員会においては委員長、統括委員と、それぞれのグループで指名された代表委員がグループ内の統括

とグループ間の調整を行った.各グループにおいて、全国より皮膚科、形成外科、放射線科、腫瘍内科など多領域の医師が策定委員として参加した.また本邦のメラノーマ診療ガイドラインとしては初めて患者会より2名がガイドライン委員としてパネル会議に参加した.パネル会議は対面会議で行い、二日間にわたり議論と修正を重ね、推奨内容を決定した.メラノーマガイドライン策定委員一覧は表1に掲載する。本ガイドラインのクリニカルクエスチョン(clinical question:CQ)と推奨作成に際しては、策定委員のなかで作成委員の他にシステマティックレビューを担当するシステマティックレビューチームを設け、エビデンスの収集やエビデンス評価・統合を実施した。文献検索は日本

医学図書館協会に依頼し、ガイドラインに精通した図書館司書が実施した。メラノーマの病期分類は AJCC 第8版[®]に準拠した。本ガイドラインは「Minds 診療ガイドライン作成マニュアル 2020 ver.3.0」[®]に準拠して作成しており、それに基づいてガイドラインの構成や推奨の強さを決定した。前版までのガイドライン等を通じてその知識や技術が広く臨床現場に浸透し、その是非について十分なコンセンサスが確立していると考えられる事項(background question)については、本ガイドラインの前半部分に総論を設けてその中で紹介した。Background Question とするには議論の余地が残る重要臨床事項について、臨床質問を作成し、CQを作成し後半に記述した。

(表 1) 皮膚がん診療ガイドライン第 4 版策定委員会 メラノーマグループ委員

統括委員長	中村泰大	埼玉医科大学国際医療センター皮膚腫瘍科・皮膚科
統括委員長	古賀弘志	北戸田アルプス皮フ科
	内博史	国立病院機構九州がんセンター皮膚腫瘍科
	宮垣朝光	聖マリアンナ医科大学皮膚科
作成委員(代表委員)	福島 聡	熊本大学皮膚病態治療再建学講座
作成委員	猪爪隆史	千葉大学皮膚科
	並川健二郎	国立がん研究センター中央病院皮膚腫瘍科
	浅井 純	京都府立医科大学皮膚科
	井垣 浩	国立がん研究センター中央病院放射線治療科
	林 礼人	横浜市立大学形成外科
	伊東孝通	九州大学皮膚科
	皆川 茜	信州大学皮膚科、東京女子医科大学附属足立医療センター皮膚科
	宮川卓也	東京大学皮膚科
	宮下 梓	熊本大学皮膚病態治療再建学講座
	田中亮多	筑波大学皮膚科
システマティックレビューチーム	緒方 大	国立がん研究センター中央病院皮膚腫瘍科
	木庭幸子	信州大学皮膚科
	平田岳郎	大阪大学大学院医学系研究科放射線治療学教室
	並木 剛	東京医科歯科大学皮膚科
	柳 輝希	琉球大学大学院医学研究科皮膚科学講座
	肥田時征	札幌医科大学医学部皮膚科学講座
	松澤高光	千葉大学皮膚科
	前田 拓	北海道大学形成外科
	橋本弘規	九州大学皮膚科
	後藤寛之	大阪公立大学皮膚科
	奥村真央	国立がん研究センター中央病院皮膚腫瘍科
患者会	杉本香苗	メラノーマ患者会 Over The Rainbow
	木村絵美	メラノーマ患者会 Over The Rainbow

6. エビデンス収集方法(文献検索)

これまでの本邦ガイドラインや海外のガイドライン を参考にメラノーマ診療に関する重要臨床課題を決定 し、それをもとにして CQ を設定した。 CQ の設定に 際しては、その構成要素(PICO(patients, problem, population: P, interventions: I, comparisons, controls, comparators: C, outcomes: O))を検討し、PICO に基づく包括的な文献検索を実施した。本ガイドラインの文献検索は日本医学図書館協会に依頼した。すべて

表 2 エビデンス総体の総括のエビデンスの確実性(強さ)

A (強): 効果の推定値が推奨を支持する適切さに強く確信がある

B(中): 効果の推定値が推奨を支持する適切さに中等度の確信がある

C (弱): 効果の推定値が推奨を支持する適切さに対する確信は限定的である

D(とても弱い):効果の推定値が推奨を支持する適切さにほとんど確信できない

のCQに関してThe Cochrane Library, PubMed, 医学中央雑誌について, 1968年1月から2023年8月最終固定版確定日まで文献検索を行った. これらのデータベースにない文献や主要な国際学会での報告についても,システマティックレビューを担当する委員によって必要と判断された場合は,ハンドサーチを行い追加した.

検索後の文献はシステマティックレビューチームに 属する改訂委員1名と、当該CQを直接担当しないガイドライン作成グループに属する改訂委員1名の計2 名で、それぞれ独立して各重要臨床課題と益と害のアウトカムに関する内容のスクリーニング(2次スクリーニング)を行い、採用論文を決定した。

7. システマティックレビューの方法

「Minds 診療 ガイドライン作成マニュアル 2020 ver.3.0」の手順に従い、付随する作業用テンプレートを用いた。

7.1 個々の報告に対する評価 (STEP 1)

まず個々のCQを担当するシステマティックレビューチームは、アウトカムごとにまとめられた文献集合の個々の論文について、研究デザイン(介入研究、観察研究)ごとにバイアスリスク(選択バイアス、実行バイアス、検出バイアス、症例減少バイアス、その他のバイアス)、非直接性(研究対象集団の違い、介入の違い、比較の違い、アウトカム測定の違い)を評価し、対象人数を抽出した。効果指標の提示方法が異なる場合は、リスク比、リスク差などに統一し、エビデンス総体として記載した。

7.2 エビデンス総体の総括 (STEP 2)

2の通りに分類した.

7.3 定量的システマティックレビュー(メタアナリシス)

研究デザインが同じで、PICOの各項目の類似性が高い場合には、効果指標を量的に統合するメタアナリシスを行い、エビデンス総体の強さを検討する一項目として考慮した.

7.4 定性的システマティックレビュー

定量的システマティックレビュー(メタアナリシス) を行うことができない場合は、定性的システマティックレビューを行った。

7.5 システマティックレビューレポートの作成

以上の定量的または定性的システマティックレビューの結果をエビデンス総体の強さとしてシステマティックレビューレポートにまとめ、エビデンス総体の総括とともに推奨作成の資料とした.

8. 推奨決定の方法

8.1 各 CQ 担当者内での検討

アウトカム全般に関する全体的なエビデンスの確実性とともに、望ましい効果(益)と望ましくない効果(害と負担など)のバランスを考慮し、推奨を作成した、望ましい効果と望ましくない効果の重要度(重みづけ)については、CQリストの重要度、およびエビデンス総体の総括の重要度をもとに再評価し決定した、以上のエビデンスの確実性、望ましい効果と望ましくない効果のバランス、患者の価値観・好みにコスト等も加味して総合的に推奨の向きと強さを勘案し、各CQ担当者内での協議を経て推奨決定会議に提出した。

8.2 推奨決定会議

策定委員会推奨決定会議 (パネル会議) において,各 CQ のシステマティックレビュー担当者から事前に提出された資料 (評価シート・エビデンス総体,システマティックレビューレポート) を参考に各レビュー担当委員が検討結果を報告した.その後,作成委員を交えて推奨について,本邦独自の医療行政や医療経済を含めた社会的背景などを加味しつつ綿密に議論した.なお多様な意見を取り入れるため作成委員,システマティックレビュー担当者に加えて患者会メンバーもパネリストとして参加することを可とした.十分な議論の後に推奨決定のための投票を行った.投票に際して以下の推奨決定方法を事前に決定しておいた.

- i. できる限り多数のメラノーマガイドライン策定 委員が投票に参加する.
- ii. 投票を行う CQ に関連して、規定を超える経済的利益相反(COI)または学術的 COI、その他の COIを有する委員は、議論には参加するが投票を棄権する.
- iii. 以下のいずれかの選択肢の一つに投票を行う (slido® を使用した無記名投票).
 - 1. 「実施する」ことを推奨する.

- 2. 「実施する」ことを提案する.
- 3. 「実施しない」ことを提案(条件付きで推奨) する
- 4. 「実施しない」ことを推奨する.
- 5. 推奨なし.
- iv. 推奨の向きと強さの決定には, evidence to decisions framework (EtD) フレームワークを用いて, 以下の方法で推奨のタイプを決定する. これは 2019 年 11 月第 1 回 Minds Tokyo GRADE Center Workshop の方法を一部改変したものである.
- ① 80%以上の票が「強い」推奨に集中したら、「強い」推奨とする.
- ② ①の条件は満たさないが、80%以上の票が特定の方向に集中した場合、一方の「条件付き」推奨とする
- ③ ①②の条件は満たさないが、「当該介入または比較対照のいずれかについての条件付き推奨」に80%以上の票が集中した場合、「当該介入または比較対照のいずれかについての条件付き推奨」とする.
- ④ ①~③ともに条件を満たさない場合は, 結果を 公表した上で討論し, 再投票する.
 - ⑤ 本行程を3回繰り返しても決定できない場合

₹3 改訂第	委員会推奨決定会議(パネル会議)における投票の棄権		
CQ 番号	CQ	経済的 COI に よる棄権	学術的 COI に よる棄権
CQ1	爪部浸潤性メラノーマに対する指趾切断術は勧められるか?	_	緒方 大
CQ2	センチネルリンパ節(SLN)転移陽性例に対して早期リンパ節郭清を行うことは勧められるか?	_	_
CQ3	根治切除後の BRAF 変異陰性メラノーマに対する術後補助療法として抗 PD-1 抗体は勧められるか?	_	_
CQ4	根治切除後の BRAF 変異陽性メラノーマに対する術後補助療法は BRAF/MEK 阻害薬と抗 PD-1 抗体のいずれが勧められるか?	_	_
CQ5	臨床的に明らかな領域リンパ節転移を有するメラノーマに対して術前 補助療法は勧められるか?	_	_
CQ6	領域リンパ節郭清を行った皮膚メラノーマに術後放射線療法は勧められるか?	_	_
CQ7	根治切除不能な BRAF 変異陰性メラノーマの一次治療は抗 PD-1 抗体,抗 PD-1 抗体+抗 CTLA-4 抗体のいずれが勧められるか?	_	並川健二郎, 猪爪隆史
CQ8	根治切除不能な BRAF 変異陽性例の一次治療は BRAF/MEK 阻害薬 抗 PD-1 抗体,ないしは抗 PD-1 抗体+抗 CTLA-4 抗体併用療法の いずれが勧められるか?	_	並川健二郎
CQ9	脳転移に対して,BRAF/MEK 阻害薬,抗 PD-1 抗体,抗 PD-1 抗体+抗 CTLA-4 抗体は勧められるか?	_	_
CQ10	BRAF/MEK 阻害薬や免疫チェックポイント阻害薬に放射線療法を併用することは勧められるか?	_	_
CQ11	BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で病勢コントロールが得られた際に投薬を中止することは勧められるか?	_	_
CQ12	BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で増悪した際に投薬を継続することは勧められるか?	_	_

は、「推奨なし」とする.

各CQの投票直前に各種COIの有無について再度確認し、規定を超えるCOIを有する委員は投票を棄権することとした。投票結果については、各CQの解説文中に示した。棄権の状況については表3に掲載した。委員は該当するCOIの開示を行った。

推奨の決定にかかわる「推奨作成関連資料」については日本皮膚科学会 HPの「ガイドライン・指針」ページに本ガイドラインとともに PDF ファイルを掲載した.

9. 作成過程における CQ 番号の変更について

作成過程における CQ 番号の変更は特になかった.

10. ガイドライン改訂作業の実際

メラノーマガイドライン第4版は2023年4月15日に第1回改訂委員会を開催し、改訂作業を開始した. 以降、以下のように、2回の改訂委員会、5回のメラノーマガイドライングループ会議、複数回のメール会議、3回のパブリックコメントと専門家のコメントによる外部評価を経て、本ガイドラインは作成された. 予備会議として推奨の提案や質疑応答をメール会議で行い効率化した.

10.1 全体会議(皮膚がん診療ガイドライン全グループでの会議)

- ・第1回全体会議(下記同内容を2回施行:2023年3月17日,3月23日:Zoom Meeting)
 - ▶ 2023~2024年での改訂予定を決定(2024年度 公開予定)
 - ▶各グループ作成委員の紹介
 - ▶ガイドライン作成作業のロードマップおよび概要紹介:中村泰大(埼玉医科大学国際医療センター),古賀弘志(信州大学)
 - ・第2回全体会議(2023年12月8日:メール会議)
 - ▶各ガイドライングループの作成進捗状況確認
 - ▶メタアナリシス RevMan 契約に関する各グループ使用調査

10.2 予備会議

- ・第1回 (2023年4月15日, 国立がん研究センター にて対面と web ハイブリッド開催)
 - ▶本ガイドラインの対象の確認、患者会メンバーの参加の決定、システマティックレビューチー

ム担当改訂委員の追加招集,推薦.

- ·第2回(2023年5月1日, web 開催)
 - ▶重要臨床課題の決定
- ·第3回(2023年5月29日, web 開催)
 - ▶患者会メンバーの参加方法及び CQ1~2 に関する議論
- ·第4回(2023年6月12日, web 開催)
 - ▶ CQ1~7 について議論
- ·第5回(2023年6月19日, web 開催)
- ▶ CQ8~12 について議論
- ·第6回(2023年6月26日, web 開催)
 - ▶ CQ1~12 の決定

そのほか、2023年6月26日から2024年2月17日まで、総論の執筆担当、システマティックレビュー方法の確認、パネル会議の進行や投票方法などについては、複数回のメール会議を行いパネル会議の前に事前に決定しておいた。

10.3 パネル会議

・2024 年 2 月 17, 18 日, TKP ガーデンシティ PRE-MIUM 東京駅丸の内中央にて開催した. 一部委員は web 参加であった.

11. 外部評価およびパブリックコメント,専門家コメント

本改訂ガイドラインは3つの外部評価グループからの評価を受けた.1つは日本皮膚科学会より,ガイドライン作成委員会委員を兼任しない学会代議員による評価を受けた(2024年9月10日~10月9日).もう1つは日本皮膚悪性腫瘍学会より,学会評議員から専門家コメントによる評価を受けた(2024年9月2日~9月27日).さらに公益財団法人日本医療機能評価機構が運営するEBM普及推進事業 Minds および日本皮膚悪性腫瘍学会のホームページでパブリックコメントを募集した(2024年9月2日~9月30日).これらのパブリックコメント,専門家コメントの内容を考慮し,コメントによる修正を行った上で,最終的な推奨を決定した.

12. 今後の改訂と目指すべき改訂のあり方

今後も医学の進歩や社会の変化とともにメラノーマ に対する診療内容も大きく変化すると予想される. そ のため、本ガイドラインも定期的な改訂が必要になる

と考えられる. これまでどおり5年ごとを目処に改訂 するとともに、必要に応じて臨時改訂を行い、日本皮 膚科学会のホームページに提示していく予定である. 皮膚がん診療ガイドライン委員会が発足し、ガイドラ イン初版を出版してから17年が経過した.過去に作成 された本邦メラノーマ診療ガイドラインは、本邦の社 会的背景や診療背景を加味してきたものの、主として 診療のグローバルスタンダードを示すことに注力して きたと言える.これは、東アジア発の質の高いエビデ ンスが極めて少ないためガイドラインの参考文献をほ とんど欧米発のものとせざるを得なかったことによ る. また, 欧米に多いメラノーマ (low-CSD (cumulative sun damage): 従来の表在拡大型に相当) と東ア ジアに多いメラノーマ(末端型メラノーマ,粘膜メラ ノーマ) との遺伝的・分子生物学的な差異が不明で あったのもその背景にあった.

今回の改訂では、東アジア発のデータを積極的に採 用し、「東アジア独自」の診療ガイドラインとすること を目指した. しかし、まだまだ欧米からの参考文献が 多い現状は否めない. 今後のガイドライン改訂では, 世界の状況を示しつつも、これから増えてくると思わ れる東アジア発のデータをさらに積極的に採用しつ つ、欧米と異なる東アジアの医療行政事情や医療経済 学的な視点を含めることで、東アジアのメラノーマ診 療の独自性を世界に適切に示すガイドラインが作成さ れるべきであると考える. 一方で,「東アジア独自」に こだわりすぎる偏狭な姿勢は決してとらず、批判を柔 軟に受け入れバランスをとりながら、常に修正と改善 を繰り返すことで、市民の理解を得て、ひいては医療 行政を動かすようなより強い影響力を持つ良質なガイ ドラインが生み出されることが期待される. また. melanoma in a congenital nevus, desmoplastic melanoma, uveal melanoma, melanoma in a blue nevus, malignant Spitz tumor, 及び小児のメラノーマといっ た稀なタイプのメラノーマについては、今回十分な情 報は得られなかった. よって本ガイドラインの推奨を これらのタイプのメラノーマにそのまま当てはめるこ とはできないと考える. 次回の改訂時までに、これら の稀なタイプのメラノーマにおける知見が集積される ことを期待する.

13. 出版後のガイドラインのモニタリング

ガイドライン公開後, アンケート調査で本ガイドラインの普及度, 診療内容の変化を検討し, さらに日本

皮膚悪性腫瘍学会が主導する皮膚悪性腫瘍予後統計調 査によるメラノーマ全国集計にて予後の変化などにつ いても検討したい.

14. 資金

このガイドライン作成に要した資金はすべて日本皮膚科学会が負担した. 日本皮膚科学会の定める基準により改訂委員会出席に関わる旅費や日当, 宿泊の支援をうけた. 原稿料などの支払いは一切なく, これらの支援が指針作成へ影響を及ぼすものではなかった.

15. 利益相反

15.1 利益相反の申告

2017年3月に日本医学会より公表された「診療ガイドライン策定参加資格基準ガイダンス」(以下,参加基準ガイダンス)⁷に従い,ガイドライン改訂委員会委員,外部評価委員が就任時に前年にさかのぼって過去3年間分とガイドライン公表までの1年ごとの利益相反(conflict of interest: COI)の開示を行った。申告に際しては、1)委員本人のCOI,委員の配偶者のCOI,2)1親等親族または収入・財産的利益を共有する者のCOI,3)委員が所属する組織・部門にかかる組織のCOIを、参加基準ガイダンスの定めるCOI自己申告書にて金額区分とともに申告した。

対象期間は2020年1月1日から2024年1月31日までとした. 該当企業・団体との間に参加基準ガイダンスを超える経済的COIを有する委員はいなかった.

システマティックレビューで採択された論文の筆頭 著者と責任著者には、学術的 COI があると定義した. 以下の委員が学術的 COI を有していた (緒方大: CQ1, 並川健二郎: CQ7, 8, 猪爪隆史: CQ7) (表 3).

15.2 COI への対応と対策

参加基準ガイダンスを超える経済的 COI を有する 委員はいなかった. 学術的 COI を有する委員は, COI に関連する CQ についての議論には参加したが推奨決 定の投票は棄権した(表 3).

表 4 紫外線曝露量, 部位, 遺伝子異常に基づいたメラノーマの分類

	Low-CSD	High-CSD		Low to no-	CSD				
				Malignan t Spitz tumor	acral	mucosal	Melanom a in congenit al nevus	Melanom a in blue nevus	uveal
従来の分類	表在拡 大型と 結節型 の一部	悪性黒 子型と 結節型 の一部	Desmopla stic melanom a	結節型 の一部	末端黒 子型	粘膜(外 陰、口腔、 副鼻腔な ど)	巨大獣 皮様母 斑に生 じたノー マ	悪性青色 母斑	眼球内
主な遺伝子異常	BRAF (p.V600E), NRAS CDKN2A, TP53, PTEN, TERT	NRAS, BRAF(no n- p.V600E), KIT CDKN2A, NF1など	NF1, ERBB2, EGFR, MET, RB1 など	ALK, ROS1, RET, NTRK1, NTRK3, MET, TERT, PTENなど	KIT, NRAS, BRAF, TERT, CDK4, NF1,TP 53, CDKN2 Aなど	KIT, NRAS など	NRAS (p.Q61) など	BAP1, EIF1AX, SF3B1な ど	GNA11, GNAQ, BAP1, EIF1AX, SF3B1, PLCB4, CYSLTR2 など

^{*}従来の結節型の多くは、水平方向の進展 (radial growth phase:RGP)を経ずに垂直方向の進展 (vertical growth phase)を示した上記いずれかの悪性黒色腫と考えられている。したがって、紫外線曝露量や部位、遺伝子異常を背景とした本分類では独立した一つのグループとして取り扱われていない。

第2章 メラノーマ総論

1. メラノーマの疫学と病因

1.1 メラノーマの疫学

メラノーマはメラノサイトが癌化した腫瘍である. 従来から臨床症状と病理所見をもとに表在拡大型,末端黒子型,悪性黒子型,結節型の4病型と,粘膜や眼球脈絡膜,脳軟膜等の皮膚以外の病型に分類されてきた.しかしながら近年の疫学研究により,人種間による各病型の頻度や,病型ごとの遺伝子変異の相違などが明らかになり,これらの遺伝子変異の相違や紫外線曝露量を背景とした色素性病変の新たな分類が提唱され用いられている(表4)^{13,15)}.

(1) 本邦における発生率と病型ごとの頻度および欧米との相違

本邦におけるメラノーマの罹病率は WHO が 2022 年に公表したデータによると 1.3 人/10 万人・年 (GLO-BOCAN: Cancer Incidence. Mortality and Prevalence Worldwide, World Health Organization, Lyon, 2022) であり、皮膚がんの中では基底細胞癌、有棘細 胞癌に次ぐ頻度である.各病型の割合では,2019年に報告された日本皮膚悪性腫瘍学会予後調査委員会の統計によると,末端黒子型が40.4%と最も多く,表在拡大型が20.5%,結節型が10%と続き,粘膜原発が9.5%,悪性黒子型が8.1%であった⁸.

一方、米国国立がん研究所が行っている Surveillance Epidemiology and End Results Program (SEER) (http://seer.cancer.gov) の疫学調査をもと に藤澤らが解析した報告によると、米国では表在拡大 型が全体の約65.8%と圧倒的に多く、本邦で多い末端 黒子型はわずか 1.9% とまれであった⁹. また診断時の 病期をみると、本邦では局所に留まる症例が69.3%、 領域リンパ節転移までが24.3%, 遠隔転移ありが6.4% であることに対し、米国ではそれぞれ83%、9%、4% である。このデータは米国におけるメラノーマについ ての啓発が本邦に比べて行き届いており、早期発見、 早期治療につながっていることを示唆する。本邦では メラノーマについての理解がまだ乏しいこと、足底や 粘膜部といった比較的気付きにくい部位での発生割合 が多いことが、米国と比較して診断時の病期が進行し ている原因になっている可能性がある. さらなる啓発 活動により早期発見例を増やしていく必要があると思 われる。

(2) 遺伝子変異と病型との相関

メラノーマでは様々な遺伝子異常が報告されてい る10.11). 露光部に発生するメラノーマでは紫外線が, 掌 蹠に発症するものでは外的刺激や外傷が関与している 可能性があり、それぞれの型に特有の遺伝子変異を認 める傾向にある. これらの遺伝子異常の中で、BRAF はメラノーマにおいて最も重要な癌遺伝子の一つであ る. メラノーマでは MAP キナーゼ経路と PI3 キナー ゼ経路の活性化が重要な役割を果たしており、これら の経路を構成する BRAF, NRAS といった分子の遺伝 子異常がその発癌に深く関与することが明らかになっ ている11). そして、これらの遺伝子異常は紫外線曝露 の程度や解剖学的部位と相関を示すことが判明し、メ ラノーマを日光曝露の累積量 (cumulative sun damage: CSD),解剖学的部位,遺伝子異常によって分け る分類が示されている (表 4)^{12~15)}. 本分類では、メラ ノーマを日光曝露の累積量が高い群 (high-CSD: 従来 の悪性黒子型に相当), 低い群 (low-CSD: 従来の表在 拡大型に相当)とそれ以外の四肢末端部 (acral:従来 の末端黒子型に相当),粘膜部 (mucosal), 眼球内 (uveal), malignant Spitz tumor, 先天性色素性母斑 に生じるもの、青色母斑に生じるものに分類している. 従来結節型と定義されていたメラノーマの多くは、水 平方向の進展(radial growth phase)を経ずに垂直方 向の進展(vertical growth phase)を示した上記いず れかのメラノーマと考えられている。したがって、紫 外線曝露量や部位、遺伝子異常を背景とした本分類で は独立した一つのグループとして取り扱われていな い. この分類によると、BRAF^{V600E}の遺伝子変異はlow-CSD で高率に認めるが、その他の型では頻度が低い. この BRAF 陽性率を人種別に検討すると、白人では low-CSD が多数を占めるため BRAF 陽性率が高くな ることに対し、アジア人では acral が約半数を占める ため、BRAF 陽性率は低くなることが予想される. 実 際、白人では患者全体の 40~60% が BRAF 遺伝子変 異を有する一方¹⁵⁾, 日本人でのBRAF遺伝子変異は 30% 弱にとどまることが Ashida らによって報告され ている16). 日本人における BRAF の変異率を原発部位 別にみると、被髪頭部で80%、体幹四肢で56~72%と 高く、頸部も44%と比較的高い変異率を示したのに対 し、手掌足底では9~13%と他部位に比較して低い変 異率であった14).

メラノーマにおける BRAF, NRAS 以外の遺伝子変

異としては、KIT が知られている。KIT はメラノサイトに発現している膜受容体型チロシンキナーゼの一つであり、細胞の分化や増殖に必要な遺伝子である。メラノーマにおいても KIT の活性型変異が腫瘍の増殖や浸潤に関与していることが明らかとなっている 17 0. KIT 遺伝子の異常は、low-CSD よりも acral、mucosal、high-CSD の型で多く、およそ $10\sim20\%$ 前後で認められる 17 0. その他、CDK4/CCND1 (cyclin dependent kinase 4/cyclin D1),GNAQ/GNA11,mTOR(mammalian target of rapamycin)や CDKN2A (cyclin dependent kinase inhibitor 2A),PTEN (phosphatase and tensin homolog),TERT (telomerase reverse transcriptase),NFI (neurofibromin-1) などのがん抑制遺伝子における異常が報告されている 15 0.

(3) メラノーマの病期分類

メラノーマの病期分類は、一般に AJCC/UICC の作成した分類が用いられる. 現在は第8版が公開されている (表5,6)5.18. 通常、まず臨床分類 (cTNM)を生検(原発巣については部分生検もしくは全切除生検、領域リンパ節についてはセンチネルリンパ節生検)により得た情報で行う (表5). ただ現実的には、本邦では臨床所見やダーモスコピー所見でメラノーマであることが明らかである場合、生検を行わずに拡大切除を行うことが多い、そして、原発巣の拡大切除やリンパ節郭清で得た組織の病理所見を臨床分類に補足し、病理学的分類 (pTNM) として分類しなおす (表6).

1) T 分類

評価は腫瘍厚(tumor thickness:TT),潰瘍の有無で行う.第7版で採用されていた 1 mm^2 あたりの分裂像数(mitotic rate)は第8版では評価項目から外されている.しかしながら,分裂像数については病期分類にかかわらず重要な予後因子であり,病期Iにおいてはセンチネルリンパ節転移の危険因子であるため,評価しておくことが望ましい.

2) 腫瘍厚(tumor thickness: TT)

TT は皮膚表面に対して垂直方向に病巣の厚さをocular micrometer等で 0.1 mm 単位まで測定し、一番厚い箇所を採用する。表皮がある部位は顆粒層の最上層から、欠損している場合は潰瘍底から測定する。評価が部分生検のみの場合や退縮したメラノーマの場合はpTX (原発巣の評価が不可能) に分類する。原発不明の場合はpT0 (原発巣が認められない) に分類する。

3) 潰瘍の有無

潰瘍化がメラノーマにおける重要な予後因子である

表5 TNM 臨床分類 (cTNM 分類)

T- 原発腫瘍

腫瘍の進展は術後分類と同様(pTカテゴリー参照)

N-領域リンパ節

NX 領域リンパ節の評価が不可能

NO 領域リンパ節転移なし

N1 1 個の領域リンパ節転移、またはリンパ節転移を伴わない領域内リンパ行性転移

Nla 顕微鏡的な転移のみ(臨床的に潜在性)

N1b 肉眼的な転移(臨床的に明らか)

N1c 領域リンパ節転移を伴わない衛星転移または in-transit 転移

N2 2個もしくは3個の領域リンパ節転移,またはリンパ節転移を伴う領域内リンパ行性転移

N2a 顕微鏡的なリンパ節転移のみ

N2b 肉眼的なリンパ節転移

N2c 1個の領域リンパ節転移を伴う衛星結節または in-transit 転移

N3 4個以上の領域リンパ節転移,または互いに癒着した領域リンパ節転移,または2個以上の領域リンパ節転移を伴う衛星 転移または in-transit 転移

N3a 顕微鏡的なリンパ節転移のみ

N3b 肉眼的なリンパ節転移

N3c 2個以上の領域リンパ節転移を伴う衛星転移または in-transit 転移

注)衛星転移とは,原発腫瘍から 2cm 以内の腫瘍胞巣または腫瘍結節である(肉眼的または顕微鏡的).In-transit 転移とは,原発腫瘍から 2cm を超えた皮膚または皮下組織転移で,領域リンパ節を超えないものである.

M- 遠隔転移

MO 遠隔転移なし

M1 遠隔転移あり

M1a 領域リンパ節をこえた皮膚、皮下組織またはリンパ節

M1b 肺

M1c 中枢神経系を除くその他の部位

Mld 中枢神経系

注) M カテゴリーの接尾辞

(O) 乳酸脱水素酵素 (LDH) 一正常値

(1) LDH 一高値

すなわち、M1a(1)は、領域リンパ節をこえた皮膚、皮下組織、またはリンパ節への転移で LDH 値が高いものを示す. LDH の記録や指定がない場合は、接尾辞は使用しない.

表 6 TNM 病理学的分類(pTNM 分類)

T- 原発腫瘍

pTX 原発腫瘍の評価が不可能(部分生検や退縮した黒色腫などを含む)

pTO 原発腫瘍が認められない

pTis 上皮内悪性黒色腫(Clark レベル I)(異型メラノサイトの増殖,メラノサイトの高度異形成,非浸潤性悪性病変)

pTl 厚さが lmm 以下の腫瘍

pTla 厚さが 0.8mm 未満で、潰瘍を伴わない腫瘍

pT1b 厚さが 0.8mm 未満で潰瘍を伴う腫瘍,または潰瘍の有無に関係なく,厚さが 0.8mm を超えるが 1mm 以下の腫瘍

pT2 厚さが 1 mm をこえるが 2 mm 以下の腫瘍

pT2a 潰瘍を伴わない

pT2b 潰瘍を伴う

pT3 厚さが 2mm をこえるが 4mm 以下の腫瘍

pT3a 潰瘍を伴わない

pT3b 潰瘍を伴う

pT4 厚さが4mmをこえる腫瘍

pT4a 潰瘍を伴わない

pT4b 潰瘍を伴う

N- 領域リンパ節

pN カテゴリーは TNM 臨床臨床分類 N カテゴリーに準ずる.

pNO 領域リンパ節を郭清した標本を組織学的に検査すると、通常、6 個以上のリンパ節が含まれる。通常の検索個数を満たしていなくても、すべてが転移陰性の場合は pNO に分類する。またセンチネルリンパ節生検のみを行い、つづいてリンパ節郭清を行わなかった場合の分類には、 "pNO (sn)" や "(p) N1 (sn)" のように "(sn)" を付記する。

M- 遠隔転移

TNM 臨床分類の M カテゴリーと同様

表 7 臨床	示病期		
0期	pTis	NO	MO
IA期	pTla	NO	MO
IB期	pT1b	NO	MO
	pT2a	NO	MO
IIA期	pT2b	NO	MO
	рТЗа	NO	MO
IIB期	рТЗЬ	NO	MO
	pT4a	NO	MO
IC期	pT4b	NO	MO
Ⅲ期	Tに関係なく	N1, 2, 3	MO
IV期	Tに関係なく	Nに関係なく	M1

ことは数多く報告されている. 潰瘍は、組織学的に表皮の全層欠損を認め、フィブリン沈着や急性炎症性の浸出液といった生体反応を伴う所見と定義される. これらの炎症反応がない場合は、外傷や機械的刺激、切片作成時の脱落等による表皮欠損と考えられ、こういった場合は潰瘍ありと評価すべきではない. 潰瘍の有無については肉眼的な潰瘍ではなく病理組織学的評価によって決まる点に注意する. 病理組織学的評価によって決まる点に注意する. 病理組織学的に表皮欠損が真の潰瘍であるかどうかが困難な場合、病歴など臨床所見を加味して評価する. 潰瘍が外傷や医原性(例えば生検時に加わった修飾や切片作成過程における表皮の脱落等)であるかどうかが不明瞭な場合は潰瘍ありに分類する. 潰瘍がなしの場合は a, ありの場合は b に分類する.

4) N 分類

N分類は、領域リンパ節と、原発巣と領域リンパ節の間のリンパ管に沿った転移(衛星転移、顕微鏡的衛星転移、in-transit 転移)とについて、転移の広がりと個数を用いて評価する。第8版では、転移の広がりについて、「臨床的に潜在性の(リンパ節)転移(clinically occult)」と「臨床的に明らかな(リンパ節)転移(clinical evident)」という表現が用いられるようになった。「臨床的に潜在性の転移」は、臨床所見や画像評価では検出されずにセンチネルリンパ節生検によって顕微鏡観察下ではじめて明らかになる転移をいう。「臨床的に明らかな転移」は臨床所見や画像評価で明らかな転移をいう。

領域リンパ節において、臨床的に潜在性の転移のみの場合は a に、臨床的に明らかな転移がひとつでもあれば b に分類され、転移の個数が 1 個であれば N1、2~3 個であれば N2、4 個以上または互いに癒着した領域リンパ節転移は N3 に分類される.

原発巣と領域リンパ節との間のリンパ管に沿った転移として(肉眼的)衛星転移、顕微鏡的衛星転移、intransit 転移がある。衛星転移は、臨床的に確認される皮膚もしくは皮下結節であり、原発巣からの距離が2cm以内に生じたものをいう。顕微鏡的衛星転移は、顕微鏡下に確認される原発巣に隣接もしくは原発巣の深部に生じた転移病変であり、原発巣とは正常の間質を隔てて完全に離れているものをいう。原発巣と転移病変との間に線維性瘢痕が介在している場合や炎症所見を伴う場合は、顕微鏡的衛星転移ではなく原発巣の進展と捉える。

in-transit 転移は原発巣からの距離が2cmを超えた皮膚または皮下組織への転移であり、領域リンパ節を超えないものと定義されている。これら3つの転移病変の区別は病期分類には反映されない。衛星転移、顕微鏡的衛星転移もしくはin-transit 転移を認めた場合、分類はcとなり、領域リンパ節転移を伴わない場合はN1c、1個の領域リンパ節転移を伴う場合はN2c、2個以上の領域リンパ節転移を伴う場合はN3cとなる。

5) M 分類

M 分類は遠隔転移について評価する. 第 8 版では、中枢神経系(脳,脊髄,軟髄膜等)への転移が新たな項目として追加された. そして遠隔転移の解剖学的部位と血清 LDH 値の 2 つを用いて分類を行う. M1a は領域リンパ節をこえた皮膚、皮下組織またはリンパ節への転移、M1b は肺転移、M1c は中枢神経系を除くその他の部位への転移、そして M1d が中枢神経系への転移である. 血清 LDH 値が正常の場合は(0),高値の場合は(1)となる. 例えば、M1a(1)は、領域リンパ節をこえた皮膚、皮下組織、またはリンパ節への転移で血清 LDH 値が高いものを示す.

6) 病理学的病期

病期分類には臨床病期と病理学的病期の2種類がある(表7,8)5.18). 第8版では臨床分類においても原発巣の病理組織学的評価や画像検査による領域リンパ節,遠隔転移の評価が含まれている.これは実臨床における治療前生検や画像評価が標準となったことを反映した結果と思われる.そして臨床分類では病期IIIはサブグループにわけられていない.病理学的分類は、すべての臨床分類の情報に加えて原発巣切除、センチネルリンパ節生検、そしてリンパ節郭清が行われた際にはその病理結果を踏まえて評価する.センチネルリンパ節生検が行われ、臨床的に潜在性の転移を1個認めたがリンパ節郭清が施行されなかった場合、pN1a

表8 病理	学的病期		
0期	pTis	NO	MO
IA期		NO	MO
IB期	•	NO	MO
	pT2a	NO	MO
ⅡA期	pT2b	NO	MO
	рТЗа	NO	MO
ⅡB期	pT3b	NO	MO
	pT4a	NO	MO
ⅡC期	pT4b	NO	MO
ⅢA期	pTla/b \sim T2a	N1a, N2a	MO
ⅢB期	pTla/b \sim T2a	N1b/c, N2b	MO
	pT2b/T3a	$N1a \sim N2b$	MO
ⅢC期	pTla∼T3a	N2c, N3a/b/c	MO
	T3b/T4a	$N1 \sim 3$	MO
	T4b	$N1a \sim N2c$	MO
ⅢD期	T4b	N3a/b/c	MO
Ⅳ期	Tに関係なく	Nに関係なく	M1
	かな原発巣なくリン <i>!</i> 通りである.	(節が特定される場合,	病期
ⅢB期	TO	N1b, N1c	MO
ⅢC期	TO	N2b/c, N3b/c	MO

(sn) とし、リンパ節郭清が行われていないことを明らかにしておく. T1でセンチネルリンパ節生検が施行されなかった場合、臨床分類を病理学的分類に適応する.

(4) 病期別予後

1) 病期 Ⅰ、Ⅱ

病期 I と病期 II は領域リンパ節転移や遠隔転移を伴わず(N0M0),原発巣の厚さと潰瘍の有無(T 分類)で分けられる。欧米における IA, IB, IIA, IIB, IIC の 5 年疾患特異生存率はそれぞれ 99%,98%,94%,97%,82% であった⁵⁾。本邦においては,日本皮膚悪性腫瘍学会予後統計調査委員会により第 8 版の病期分類に基づいた疾患特異的 5 年生存率が解析されており,IA が 97.9%,IB が 96.2%,IIA が 94.1%,IIB が 84.4%,IIC が 72.2% と,概ね同様の生存率であった¹⁸⁾。

2) 病期 Ⅲ

病期 III は遠隔転移を伴わず (M0), 原発巣の厚さと潰瘍の有無 (T分類)と, 領域リンパ節と原発巣と領域リンパ節の間のリンパ管に沿った転移(衛星転移, 顕微鏡的衛星転移, in-transit 転移) (N分類)によって IIIA, IIIB, IIIC, IIID の4つのサブグループに分けられる。欧米における IIIA, IIIB, IIIC, IIID の5年疾患特異生存率はそれぞれ, 93%, 83%, 69%, 32%であった。日本皮膚悪性腫瘍学会予後統計調査委員会による本邦における病期 III の疾患特異的5年生存率は、IIIAが87.5%, IIIBが72.6%, IIICが55.3%, IIIDが26.0%であり、米国における解析と概ね同様の生存

率であった.

3) 病期 IV

第8版において、M分類では遠隔転移部位やLDH値により層別化されたが、病期IVのサブグループ分類はなされていない。これは、現在の解析対象となる症例が、免疫チェックポイント阻害薬や分子標的薬などの近年の新規薬物療法が登場する以前の症例を解析しているため、転移病変部位やLDH値による生存率の相違がほとんどみられなかったためと思われる。しかしながら、前述の新規薬物療法による生存率の改善により、今後はサブグループ化による生存率の差が明確になっていくことが予想される。

1.2 メラノーマの病因、危険因子

メラノーマの発生には、疫学調査によりいくつかの環境因子や宿主因子との関連が報告されている。環境因子としては、人種、紫外線曝露、外傷、免疫抑制状態などが、宿主因子としては、巨大色素細胞母斑、色素性乾皮症、多発する後天性色素細胞母斑などが挙げられる。

(1)環境因子

紫外線曝露については、慢性の紫外線曝露よりも間欠的、大量の紫外線曝露が危険因子であり、日焼け回数に応じて発生リスクが上昇するとの報告がある $^{19\sim21)}$. しかしながら日本人に多い末端型では紫外線曝露の影響は考えにくく、むしろ外傷の関与が想定されている $^{22)}$. 免疫抑制状態についてみると、メラノーマの発生リスクは臓器移植患者では正常人と比較して $^{2.1}\sim8$ 倍、悪性リンパ腫患者では $^{1.8}\sim2.4$ 倍、HIV 患者では $^{1.5}\sim2$ 倍とされ、またこれらのリスクのある患者に発症したメラノーマの予後も正常人に比べて不良であったと報告されている 21).

(2) 宿主因子

メラノーマは既存の色素細胞性病変から生じることがあるが、そのほとんどが先天性巨大色素細胞母斑から生じると考えられている。先天性巨大色素細胞母斑は、長径が概ね20cmを超える先天性に存在する色素細胞母斑で、発生頻度は2万人に1人程度と推定される。巨大色素細胞母斑の2.3~7.5%でメラノーマが発生するといわれており、その多くが幼少期に生じる。De novo に発生するメラノーマと異なり、真皮内胞巣から発生するため注意が必要である²³⁾、中型(20cm未満)や小型(1.5cm以下)の先天性色素細胞母斑におけるメラノーマの発生リスクは0.8~2.6%と報告さ

れている¹⁹. これらに生じるメラノーマは、巨大先天性色素細胞母斑とは異なり、成人以降での発症が多く、母斑辺縁の表皮内成分から生じるといわれている²⁴. 一方、後天性色素細胞母斑では、母斑内部よりメラノーマが生じたと考えられる症例の報告があるが、先天性色素細胞母斑と比較して頻度が極めて低く、単なる偶発である可能性や、最初からメラノーマであり細胞の一部が組織学的に良性の母斑のように見えているだけに過ぎないという可能性が指摘されており、結論が出ていない、後天性色素細胞母斑の個数とメラノーマ発生の関連については、個数が多いほどメラノーマの発生リスクが高くなることが白人での研究で明らかになっている。日本人においても、色白で50個以上の色素細胞母斑がある場合はメラノーマの発生リスクが高くなる可能性がある²⁵.

2. メラノーマの診断

2.1 肉眼による視診

メラノーマの臨床診断において最も初歩的かつ基本 となるのは、肉眼による視診である. メラノーマの一 般的な肉眼所見は、ABCD(E)ルール(Asymmetry, Border irregularity, Color variegation, Diameter > 6 mm, Evolution) に集約される²⁶⁾. 一方で、メラノーマ は病型や解剖学的部位により、多様な臨床像を示す. 特に、結節型メラノーマ、無/乏色素性メラノーマで は、ABCD(E)ルールが適応されにくいため、急速 に変化増大するなどの臨床経過を示す病変について は、慎重に精査を進める. また、メラノーマの既往歴 または家族歴を有する患者や、複数の色素性病変を有 する患者においては積極的に全身皮膚の診察を行い. メラノーマが同一患者の他の色素性病変と非類似性を 示す「醜いアヒルの子サイン」などを活用して、メラ ノーマの検出に努める20. メラノーマの臨床診断にお いては、問診等を含む対面による診察を基本とし、肉 眼所見でメラノーマの可能性が除外できない病変につ いては、後述するダーモスコピーや生検を積極的に実 施する.

2.2 ダーモスコピー

ダーモスコープという機器を用いて、偏光フィルタ 等で角層からの乱反射を軽減したうえで、病変を10倍 程度に拡大して観察する検査である。肉眼による視診 に比較して、病変内の色や構造物が詳細に観察可能に なる. ダーモスコピーのトレーニングを積んだエキスパートがダーモスコピー検査を行うことで、ダーモスコピー検査を行うことで、ダーモスコピー検査を行わない場合に比べてメラノーマの診断精度が向上することが示されている²⁸⁻³⁰⁾. そのため、メラノーマなどの色素を有する色素性腫瘍の臨床診断には必須の検査となっている.

2.3 生検

肉眼およびダーモスコピー所見等からメラノーマが 疑われる病変に対しては、躊躇せず生検を実施して病 理組織学的検討を行う. 側方は病巣辺縁より1~ 3 mm, 深部は取り残しが生じない程度のマージンを 確保し、全切除生検するのが最も望ましい31,32). 既存の リンパ流を改変し、センチネルリンパ節の評価に影響 を及ぼす恐れがある過大な側方マージンは回避すべき である. しかし、大きな病変、切除後に高度な修復を 要する部位 (顔面, 掌蹠, 指趾, 耳など) の病変, ま たは患者側の要因(合併症,年齢,美容的希望など) によっては、部分生検を考慮してもよい. 病理依頼書 には、病変の部位や大きさ、メラノーマの既往やそれ に対する局所療法・全身療法の病歴、病変の経時変化 など、病理組織学的評価に影響しうる臨床情報につい て記載する. 必要に応じて臨床写真やダーモスコピー 画像を病理依頼書に添付し、病理診断の助けとする.

(1) 全切除生検

生検の結果メラノーマと診断された場合は、引き続き拡大切除を行うのが一般的である。したがって、全切除生検部の閉創に、皮弁や一期的植皮は避けるべきである。また、四肢の病変でセンチネルリンパ節生検(sentinel lymph node biopsy: SLNB)を行う可能性が高い場合は、リンパ流への影響を考慮して、四肢の長軸方向に一致する一次縫合が可能かについても検討する³¹¬³³)。さらに、爪部メラノーマのように、縫縮による閉創が困難な部位や病変においては、一時的に人工真皮で被覆することも可能である。

(2) 部分生検

検体の採取部位は、最もメラノーマが疑わしく、腫瘍厚(tumor thickness: TT)が厚いと思われる部分を選ぶ、大きな病変では、複数の異なる箇所で生検を行うことも検討する、掌蹠の病変では、検体の切り出しの方向を誤らないようにするため、パンチ生検より皮溝皮丘に平行な紡錘形の生検が望ましい、病理標本の切り出しが皮丘と皮溝に垂直になるよう、病理依頼書に明記する、生検の種類(全切除生検または部分生

検)が、メラノーマ患者の予後に明らかな悪影響を及ぼすことは知られていない^{34,35)}. また、先行する生検が、SLNBの同定に影響を及ぼさないことも報告されている^{36,37)}. 一方で、部分生検では病変全体を評価することができないためメラノーマの偽陰性率が高くなること、TTの評価が不正確になる可能性があることをあらかじめ念頭に置く、部分生検で診断が確定しない、あるいはメラノーマの診断はできてもTTの評価が困難なためSLNBの適用や拡大切除の側方マージンが決められない場合には、病変内の別箇所を再生検するか、エコー検査などでTTを計測する.

(3) 臨床診断と病理診断が乖離した場合

臨床的にメラノーマを疑う病変に対して、メラノーマとは異なる病理報告がなされた場合には、検体採取部位が適切でなかった可能性を第一に考える。次に、臨床写真やダーモスコピーを参照しながら、担当の病理医と積極的に協議をおこない、必要に応じて標本の再作製、再生検の実施、メラノサイト系腫瘍に精通した専門家へのコンサルテーションを検討する。とりわけ、掌蹠と爪部のメラノーマin situ 病変においては、病理標本のみでの診断を確定することが困難な場合がある。ダーモスコピー所見を含む臨床情報を総合的に加味して、最終診断を行うよう努める。

2.4 病理診断

メラノサイト系腫瘍の病理診断においては、一般病理医だけでなく、メラノサイト系腫瘍に精通した病理医を交えて行うことが望ましい。特に、メラノーマの早期病変や細胞異型が比較的乏しい病変では、病理医の間でも診断の一致率や再現率が高くないことが知られているため³⁸⁾、複数医師で慎重に検討する。

免疫染色は病理診断の補助的ツールとして有用である。メラノサイトの同定には、S-100 タンパクや SOX-10、Melan A が頻用される。代表的なメラノーマ抗原には HMB-45 や PRAME があるが、いずれに対するマーカーも偽陽性・偽陰性となり得るため、それぞれの特性を理解した上で参考所見にとどめておくのがよい。高い Ki-67 陽性率や p16 発現欠失の所見も、色素細胞母斑ではなくメラノーマであることを支持する。

近年では、腫瘍細胞の遺伝子的特徴によって、メラノサイト系腫瘍の分類を行うのが主流となりつつある。各疾患カテゴリーにおいて頻度の高い遺伝子変異の有無を調べることは、その病変がいずれの遺伝子変異による経路で生じたものかを理解するのに役立つ.

また. 色素細胞母斑とメラノーマの間に位置する中 間悪性群を指し示す概念として, intraepidermal atypical melanocytic proliferation (IAMP): 上皮内・ 表皮内に限局する中間悪性(まだメラノーマではない, あるいは、きわめて早期の上皮内・表皮内メラノーマ) のメラノサイト系腫瘍, melanocytoma: 真皮内にも広 がる中間悪性(まだメラノーマではない,あるいは, 低悪性度のメラノーマ)のメラノサイト系腫瘍がある. さらには良悪性の判断が困難な病変に対しては, intraepidermal atypical melanocytic proliferation of uncertain significance (IAMPUS): 上皮内・表皮内の 悪性度不明(メラノーマかもしれない)の色素細胞腫 瘍, superficial atypical melanocytic proliferation of uncertain significance (SAMPUS):上皮内·表皮内 及び真皮浅層の悪性度不明(メラノーマかもしれない) のメラノサイト系腫瘍, melanocytic tumors of uncertain malignant potential (MELTUMP): 真皮内主体 の悪性度不明(メラノーマかもしれない)のメラノサ イト系腫瘍, の用語が提唱されている. これらの用語 がどのような病理組織学的所見に対応するのかについ て、エキスパート間でも完全な一致は得られていない ため、非エキスパートによる不用意な使用は慎むべき である. 一方で、メラノサイト系腫瘍には、病理組織 学的に中間悪性と言える病変や良悪性のいずれかに分 類することが極めて困難な病変が、一定数存在するこ とも事実である. 前者の中間悪性群の病変に対しては 完全切除(辺縁切除でも可)が望まれ、後者の良悪性 不明の病変に対しては各症例の状況を加味したうえで の柔軟な対応が求められる.

2.5 スクリーニング画像検査

全身の皮膚および理学的診察を行い、皮膚転移、リンパ節転移および遠隔転移の有無を必ず評価する。自 覚症状または理学所見において転移を示唆する点があ れば、病期に関わらず、その点に関して重点的な画像 検査計画を立てる.

病期 0~II に対して、本ガイドライン執筆時点において最新の NCCN ガイドライン (Version 3. 2023) では³³⁾, 転移を疑う自覚症状または理学所見がない患者に対して、転移スクリーニングのための一律的な画像検査は推奨していない。ただし、理学所見によって転移かどうか判然としない領域リンパ節に対しては、エコー検査を考慮することとされている。海外のメタアナリシスにおいて、エコー検査、CT、PET、PET/CT

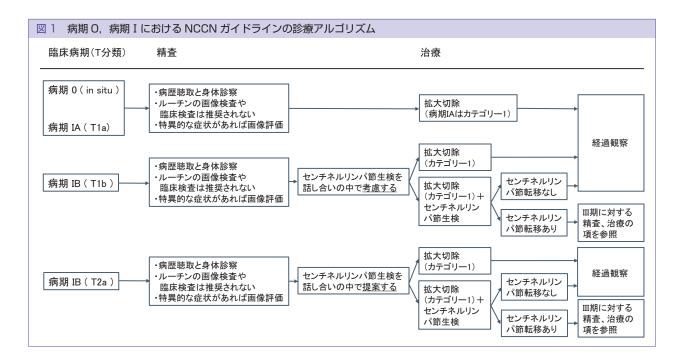
を比較した場合、リンパ節転移検出にはエコー検査が 最も優れていたとの報告があるので390, リンパ節転移 スクリーニング目的であれば、エコー検査が望ましい. しかしながら本邦においては、エコー検査の施行が困 難な施設もあり、そのような場合には CT での代用も 十分許容される. これらの病期に対して. 一律的な転 移スクリーニングのための画像検査を推奨しない理由 として、画像検査による真の転移検出率が低く医療経 済的な有益性が低いこと、一方で予後の改善効果が確 認されておらず、数多くの偽陽性による弊害が真の転 移検出の利益を上回ること、などが挙げられる40.41). し かし、本邦においては画像検査コストが欧米諸国に比 べて低く、各種画像検査へのアクセスも良い、そのた め、明確な基準は示せないものの、原発巣の T 分類ご との潜在性転移の危険性, 画像検査の偽陽性による弊 害や被曝のリスク等を考慮したうえで、SLNB 施行予 定の有無にかかわらず保険適用の範囲内でスクリーニ ング画像検査(多くは頸部または胸部から骨盤鼠径部 の造影 CT) を行うことは許容される. この場合, ス クリーニング画像検査で転移が見つからなくても. ベースライン画像を記録しておくことで、経過観察時 の画像との比較検討を可能にするという意義もある. なお,胸部 X 線は偽陽性が多いことから,メラノーマ 肺転移のスクリーニング目的に使用することは推奨さ れない42.43). 病期 III 以上では、転移スクリーニングの ための画像検査を実施する. 脳転移以外の転移検索に ついては、原発巣から領域リンパ節、および頸部から 骨盤鼠径部の造影 CT または PET/CT が勧められる. CT と PET/CT の有用性を比較すると、転移全般に対 する特異度はほぼ同等だが、感度はPET/CTのほうが 高い傾向があった40.しかし、肝転移と肺転移に関し ては、PET/CTよりもCTのほうが陽性適中率および 陰性適中率が高い傾向にある40. 各施設の状況により CT、PET/CT のいずれを選択してもよいが、国内で の普及状況や PET/CT 検査コストを勘案すると、CT によるスクリーニング画像検査は十分な診断性能を有 しており、本邦では保険適用を考慮したうえで診療上 必要な場合に PET/CT 検査を追加で行うこととする.

脳転移の検索について、NCCN ガイドライン³³⁾では、病期 IIIb 以上では実施を考慮し、病期 IV では実施を推奨するとされている。特に、臨床的に明らかな領域リンパ節転移または遠隔転移が確認された場合には、初期治療計画を立てるために脳転移の検索が欠かせない。脳転移の検出は、CTよりも MRI が優れているた

め,可能であれば MRI を選択する. さらに,特定の臓器転移を疑う場合には,臓器毎の最適な機器と撮影条件等について,各施設の放射線診断医と協議するのが望ましい.

3. 病期と治療方針. 経過観察方針

3.1 病期別の治療アルゴリズム


本ガイドライン執筆時点において、メラノーマの病期は AJCC 第8版に準じて分類される⁴⁵⁾.本章では、AJCC 第8版に準じて分類された病期別の治療アルゴリズムに関して概説する.前版(皮膚悪性腫瘍ガイドライン第3版メラノーマ診療ガイドライン 2019³⁾)での記載が理解しやすくまとめられており、第4版においても、本ガイドライン執筆時点において最新のNCCN ガイドライン³³⁾に基づいてアルゴリズムの図を作成し、本邦の患者に使用する際に注意すべき点については適宜解説を加える形で記載する。図中におけるエビデンスとコンセンサスによるカテゴリーは以下のように定義され、指定のない場合には推奨のカテゴリーは 2A である.

- ・カテゴリー1:高レベルのエビデンスに基づいて おり、その介入が適切であるという NCCN の統一した コンセンサスが存在する.
- ・カテゴリー 2A: 比較的低レベルのエビデンスに基づいており、その介入が適切であるという NCCN の統一したコンセンサスが存在する.
- ・カテゴリー2B:比較的低レベルのエビデンスに基づいており、その介入が適切であるというコンセンサスが NCCN に存在する.
- ・カテゴリー3:いずれかのレベルでのエビデンスには基づいてはいるが、その介入が適切であるかという点でNCCN内に大きな意見の不一致がある.

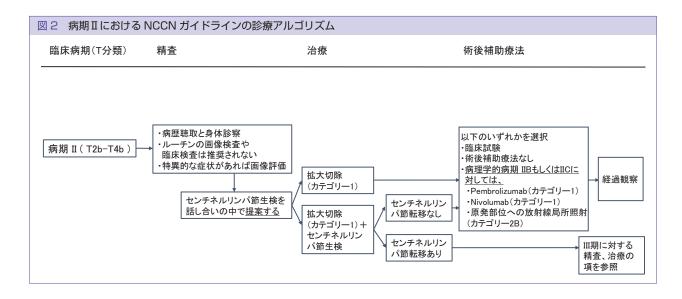
(1) 各病期共通の項目

1) 病歴聴取

原発巣の経過を聞くとともに、後述する身体診察で見つかったメラノーマと関連する所見に関しても経過を聴取する。初回の診察時には既往歴と家族歴についても聴取する。既往歴に関しては、メラノーマの既往がないかの確認が最も重要とされる。レジストリ研究によると、皮膚メラノーマの既往がある患者の再発を除いた新規皮膚メラノーマ発生リスクは一般集団と比較して8~9倍上昇すると言われており46.47、皮膚メラノーマの既往がある患者の陰部粘膜の新規メラノーマ

の発生のリスクは一般集団と比較して10倍上昇し、口 腔粘膜の新規メラノーマの発生リスクは一般集団と比 較して7倍程度上昇すると言われている470,これらの リスクの上昇は、初回のメラノーマの診断から20年以 上続くと言われているため40, 経過観察の際にも念頭 に置く必要がある. しかしながら. 上記の根拠となっ ているのは白人におけるデータのため、本邦の患者に 関しては当てはまらない可能性もあることに注意が必 要である. 家族歴の聴取においては、癌の既往、中で もメラノーマの家族歴がないかの確認を行うことが重 要とされる。全メラノーマ患者のうち、家族歴のある メラノーマ患者は5~10%程度と推測されている48). 第一度近親者(親、子、兄弟、姉妹)にメラノーマの 既往があった場合、本人がメラノーマを生じるリスク は一般集団と比較して2倍程度と言われている49.家 族性メラノーマの素因となる生殖細胞系列の浸透率の 高い遺伝子変異にはCDKN2A, CDK4, BAP1, TERT, POT1, ACD, TERF2IP などが挙げられるが⁵⁰⁾, 中で も CDKN2A の変異は家族性メラノーマの 20~40% を 占める⁵¹⁾. 生殖細胞系列の CDKN2A 変異はメラノーマ 以外にも特に膵癌の素因となるため52, 膵癌の家族歴 にも気をつける. その他, 生殖細胞系列の BAPI 変異 はメラノーマ以外に中皮腫や腎細胞癌、POT1変異は メラノーマ以外に神経膠腫と関連がある500.

2)身体診察


各病期共通で、原発巣、原発巣周囲、ならびに原発

巣以外の全身の皮膚、診察可能な粘膜表面に新たなメラノーマがないかどうかを確認する⁵³⁾.メラノーマの既往がある患者では新規のメラノーマの発生率も上昇しているため^{46,47)}、病期 0、IA であっても全身の皮膚や診察可能な粘膜面を診察することが欧米では推奨される。本邦では先述のように新規メラノーマの発生リスクの上昇に関しては明らかではないが、原発巣、原発巣周囲の診察が重要なのは同様である。臨床的に病期 IB 以降の病期と思われる症例では、in-transit 転移や衛星転移の有無にも気をつけて診察を行い、また全ての体表リンパ節の腫大の有無を意識する必要があるが、特に領域リンパ節に関しては触診を行い、腫大リンパ節がないかどうかを確認する。

(2) 病期 O, I (図 1)

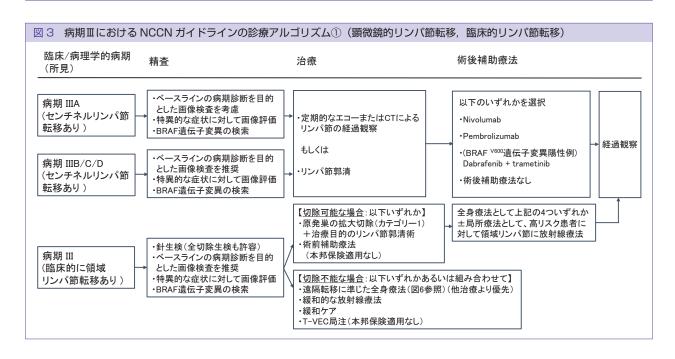
1)精査

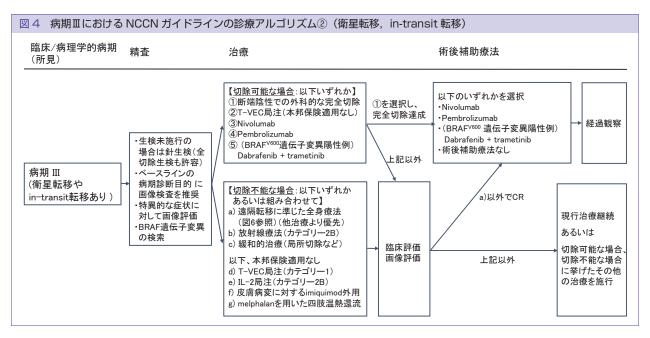
NCCN ガイドライン³³のアルゴリズムでは、病期 0~II に関しては臨床病期として記載されている。より臨床に即したアルゴリズムとなっているが、術前の臨床病期と術後の病理学的病期が基本的に乖離しないことを前提としたアルゴリズムとなっている。本邦においては、全切除生検が困難、あるいは臨床所見やダーモスコピー所見でメラノーマの診断が明らかな場合は術前の生検が行われず、結果、術前の臨床病期と術後の病理組織学的病期が乖離する症例も存在する。その場合は、アルゴリズムの臨床病期を病理学的病期と捉えて対応する必要があるが、最短で適切な治療を行うた

めにも、術前の生検を行わない症例では高周波エコー等でおよその TT を測定しておくことが望ましい. 20 MHz の高周波エコーを用いた TT の評価については、複数の前向きコホート研究ならびにシステマティックレビューで、術前の高周波エコーでの測定値と実際の標本の TT の相関係数を算出し、相関係数が高値であったと報告されている54~56). しかしながら、TT が 0.4 mm より小さいもの、足底領域、炎症細胞浸潤や線維化を強く伴う症例などでは相関が低下するという報告もあるため56)、その点を踏まえて高周波エコーを使用する必要がある.

2) 治療

NCCN ガイドラインでは³³⁾、センチネルリンパ節の 転移陽性率が5%未満の際にはセンチネルリンパ節生 検(sentinel lymph node biopsy:SLNB)の施行を推 奨せず、5~10%の際には「話し合いの中で考慮する」 (discuss and consider), 10%以上の場合には「話し合 いの中で提案する」(discuss and offer) と記載してい る.そのため,病期 IA の治療では原発巣の拡大切除 のみで SLNB は推奨せず、病期 IB のうち T1b のもの はSLNBを「話し合いの中で考慮する」。 病期 IB のう ち T2a のものは SLNB を「話し合いの中で提案する」 とされている. しかしながら、病期 IA であっても、 42歳以下ではセンチネルリンパ節の転移陽性率が 7.5%, 頭頸部原発のものでは9.2%, リンパ管あるいは 血管浸潤を伴うものでは 21.4%, 1 mm² あたり 2 個以 上の核分裂像を伴うものでは8.2%と大規模後ろ向き 研究で示されており57)、NCCN ガイドライン上でもこ れらの特徴を持つものでは病期 IA であっても SLNB を話し合いの中で考慮あるいは提案してもよいのではないかと注釈されている 33 . 原発巣に対する治療に関しては、病期 0、 I ともに拡大切除が推奨されている。また病期 $0\sim II$ に対する原発巣の治療では拡大切除以外の選択肢は提示されていない。


(3) 病期 II (図2)


1)精查

NCCN ガイドラインでは³³⁾、病期 I と同様に病期 II に対してもルーチンでの画像検査や臨床検査は推奨さ れていない。原発巣の切除ならびに SLNB を行い、セ ンチネルリンパ節に転移が見られた場合に、胸部~骨 盤鼠径部(必要があれば頸部も入れて)の造影 CT. 全身の PET/CT, 脳の造影 MRI, 領域リンパ節のエ コーなどの画像検査を行う方針としている. 本邦では 原発巣の所見から病期 Ⅱと推定される症例に対して は、術前に全身 CT や領域リンパ節のエコーなどの画 像検索が行われていることが多い. 後ろ向き研究の中 には、TT 2.85 mm 以上のものや足底原発のものでは 有意に PET/CT で遠隔転移が見つかる確率が上昇し たとの報告もあり58)、本邦での画像検査のタイミング に関して否定されるものではない. NCCN ガイドライ ン33)での画像検査のタイミングは医療経済的な側面を 考慮すると優れているが、本邦での画像検査のタイミ ングでは術前に転移がないかどうかを確実に確認して から手術計画を立てられるという面で利点がある.

2) 治療

原発巣の拡大切除を行うとともに、センチネルリンパ節の転移陽性例が10%以上の症例で見られるため SLNB を「話し合いの中で提案する」とされている.



前版である皮膚悪性腫瘍ガイドライン第3版メラノーマ診療ガイドライン2019[®]以降の変化として、切除後に病理学的病期が病期 IIB もしくは病期 IIC と確定した症例に対しては、pembrolizumab や nivolumab での術後補助療法がカテゴリー1で推奨されている。本邦においては、本ガイドライン執筆時点で pembrolizumab のみが病期 IIB、IIC の術後補助療法として使用される。

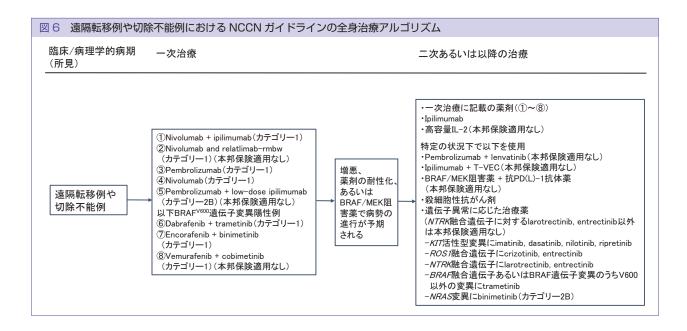
(4) 病期Ⅲ(図3,4)

1)精查

病期 III~IV に関しては、病期 IIIA でルーチンでの画像検査を考慮、病期 IIIB~IV に関してはルーチンでの画像検査を推奨している。ルーチンでの画像検査では上述のように、胸部~骨盤鼠径部(必要があれば頸部も入れて)の造影 CT、全身の PET/CT、脳の造影 MRI、領域リンパ節のエコーを施行する。なお、造影 CT を撮影できた場合は全身の PET/CT は必須ではなく、造影 CT を撮影できなかった場合は全身の PET/

CTを行うことを推奨している。また病期 III 以降においては、精査の項目に BRAF 遺伝子変異の検索が含まれる。現状、本邦においても、病期 0、I、II においては BRAF/MEK 阻害薬を使用する機会はないため、合理的な検査のタイミングと言える。

2) 治療


センチネルリンパ節に転移が見られた場合、治療と して定期的なエコー検査や CT による領域リンパ節の 経過観察あるいは領域リンパ節郭清の2つの選択肢が 挙げられている. 本ガイドラインの CQ2 において、セ ンチネルリンパ節転移陽性例に対してリンパ節郭清が 勧められるかどうかに関して記載しているので、そち らも参照されたい. 特筆すべき点としては、NCCN ガ イドライン33)でも記載のとおり、センチネルリンパ節 転移陽性例全例においてリンパ節郭清が不要というこ とにはならない点である. NCCN ガイドラインでは, センチネルリンパ節内の腫瘍量が多い場合や術後補助 療法が行えない場合などは、リンパ節の経過観察のみ で十分かどうかは検討の余地があるとして、リンパ節 郭清の選択肢を残している. またリンパ節の経過観察 という選択肢の根拠となった臨床試験59~61)が行われた 海外と本邦では病型の割合が大きく異なることも考慮 すると、本邦においても同様にリンパ節郭清は治療選 択肢として残す必要があると考えられる. 術後補助療 法においては、NCCN ガイドラインと同様に本邦にお いても, 全身療法として, nivolumab, pembrolizumab, dabrafenib + trametinib 併用療法, 術後補助療法を施

行しない,の4つの選択肢から選択する. 術後補助療法の詳細は本ガイドラインの CQ3, CQ4, 総論(第2章 メラノーマ総論) 7.6を参照されたい. また着目したい点としては,領域リンパ節に臨床的に明らかな転移がある場合の治療選択として術前補助療法がNCCNガイドラインに記載されていることである. 本邦では本ガイドライン執筆時点で保険適用外の治療法であるが,術前補助療法の詳細に関しては本ガイドラインの CQ5 ならびに総論 7.5を参照されたい. また臨床的に明らかな領域リンパ節転移があり,根治目的の領域リンパ節群に術後放射線療法が考慮される. 本邦における術後放射線療法の方針に関しては,本ガイドラインの CQ6 ならびに総論 6.2を参照されたい.

(5) 病期 IV (図 5, 6)

1)精査

精査としては、ベースラインでの画像検索、血清LDH値の測定、BRAF遺伝子変異の検索が推奨されている。また注釈において、広範な遺伝子検査にも触れられている。臨床試験に参加するための適格規準の確認、あるいはさらなる治療方針の決定に必要な場合は広範な遺伝子検査を考慮すると記載されている。本邦以外の国では、パネル検査を含む遺伝子検査の実施時期に関しては規定されていない。本邦では遺伝子パネル検査は標準治療が終了あるいは終了が見込まれる、または標準治療が存在しない固形がんに対して使用する必要があることに注意が必要である⁶².

2) 治療

病期 IV の治療アルゴリズムにおいては、限局的で 少数個の転移であるオリゴ転移の場合と、広範な転移 の場合の2つに分けて記載されている.

オリゴ転移の場合には、転移巣局所に対する治療あるいは全身療法を行うとしている.

転移巣局所に対する治療としては手術療法,定位放射線療法,T-VECの局所注射(本邦保険適用なし,T-VECの詳細は本ガイドラインの総論9.4を参照のこと)が治療選択肢として挙げられており,それらの治療で病変の消失が見られた場合には術後補助療法に移行する.全身療法を施行した場合には,治療後の画像検査で他部位に新出病変が見られない場合には外科的切除ができないかを検討すると記載されており,手術療法が重要な治療選択肢の一つとして位置付けられている.遠隔転移巣に対する手術療法に関しては,本ガイドラインの総論4.4も参照されたい.

広範な転移の場合には全身療法を行うことが推奨され、その他症状緩和を目的とした手術や放射線療法、T-VECの局所注射(本邦保険適用なし)、緩和ケアの治療選択肢の記載がされている。全身療法に関しては図6に一覧を記載した。NCCNガイドラインでは33、BRAF/MEK 阻害薬よりも免疫チェックポイント阻害薬を含む治療にやや重きを置いて記載しているが、免疫チェックポイント阻害薬と分子標的薬のどちらを使用するかは個々の症例の状況によること、欧米と本邦の患者間で免疫チェックポイント阻害薬の治療効果に

差があることなどを踏まえ、ここでは一覧での記載にとどめた.

一次治療としては、免疫チェックポイント阻害薬の併用療法として nivolumab + ipilimumab 併用療法、pembrolizumab + 低用量 ipilimumab 併用療法(本邦保険適用なし)、nivolumab・relatlimab 配合剤(本邦保険適用なし)、単剤療法として nivolumab、pembrolizumab、標的治療として dabrafenib + trametinib 併用療法、encorafenib + binimetinib 併用療法、vemurafenib + cobimetinib 併用療法(本邦保険適用なし)が記載されている。このうち、nivolumab・relatlimab 配合剤は nivolumab と抗 LAG-3 抗体 relatlimab の固定用量配合剤で、nivolumab と relatlimab の併用療法の効果に関しては本ガイドラインの総論 9.4 に記載しているので参考にされたい。また本邦の一次治療としてどの治療法を選択するかに関しては、本ガイドラインのCQ7、8で検討しているため、そちらも参照されたい

二次あるいは以降の治療としては様々な薬剤が記載されているが、本邦で使用可能な薬剤としては、一次治療で記載した薬剤(nivolumab + ipilimumab 併用療法、nivolumab,pembrolizumab,dabrafenib + trametinib 併用療法。encorafenib + binimetinib 併用療法の他、ipilimumab,殺細胞性抗がん剤、遺伝子異常に応じた治療薬の一部)となっている。Ipilimumab 単剤の治療効果は本ガイドラインの総論 9.2、殺細胞性抗がん剤の治療効果は本ガイドラインの総論 8.2 を参照さ

図フ	各ガイドライ	インにおける残存病変がない	い場合の経過観察方針

ガイドライン	イドライン 病期 経過観察の間隔		身体診察	検査
	0	少なくとも年1回の身体診察	皮膚に重点をおいて診察	・ルーチンでの血液検査は推奨されない ・無症状の場合、スクリーニングの画像検査は推奨されない
NCCN	IA~IIA	5年間は6~12ヶ月ごとの身体診察、その後は臨床的に必要なら年1回の身体診察	皮膚やリンパ節に重点をおいて 診察	・ルーチンでの血液検査は推奨されない ・無症状の場合、スクリーニングの画像検査は推奨されない ・特異的な症状があれば精査のための画像検査を行う
guideline	IIB∼IV	2年間は3~6ヶ月ごと、その後3年は3~12ヶ月ごとの身体診察、その後は臨床的に必要なら年1回の身体診察	皮膚やリンパ節に重点をおいて 診察	・ルーチンでの血液検査は推奨されない ・2年間は3~12ヶ月ごと、その後3年間は6~12ヶ月ごとの スクリーニングの画像検査を考慮 ・3~5年経過後は、再発リスクにもよるが、症状がなければルーチン でのスクリーニング画像検査は推奨されない
	IA	3年間は6ヶ月ごとの身体診察、 その後は年1回の身体診察		・ルーチンでの血液検査は推奨されない ・スクリーニングの画像検査は推奨されない
European consensus-based	IB∼IIB	3年間は3~6ヶ月ごとの身体診察、 その後7年は6ヶ月ごとの身体診察、 その後は年1回の身体診察	・切除痕や周囲皮膚の診察 ・リンパ節の診察 ・皮膚全体また診察可能な粘膜を 視診やダーモスコピーで診察	・3年間は3~6ヶ月ごとのLDH、S-100の血液検査 ・3年間は6ヶ月ごとのリンパ節に対するエコー検査 ・その他のスクリーニングのための画像検査は推奨されない
interdisciplinary guideline	IIC∼IV	3年間は3ヶ月ごとの身体診察、その後7年は6ヶ月ごとの身体診察 その後7年は6ヶ月ごとの身体診察 その後は年1回の身体診察	伝感やジーモインニー で必然 ・症状があれば症状がある部位の 身体評価	・3年間は3~6ヶ月ごとのLDH、S-100の血液検査 ・3年間は3~6ヶ月ごとのリンパ節に対するエコー検査 ・3年間は3ヶ月(Stage IV)、3~6ヶ月(Stage IIID)、 6ヶ月(Stage IIC~IIIC)ごとの画像検査

れたい. 遺伝子異常に応じた治療薬に関しては. NCCN ガイドラインでは³³⁾, KIT 活性型変異に対しては imatinib や nilotinib などのマルチキナーゼ阻害薬. ROS1 融合遺伝子に対してはチロシンキナーゼ阻害薬の crizotinib や entrectinib, NTRK 融合遺伝子に対して はチロシンキナーゼ阻害薬の larotrectinib や entrectinib, BRAF 融合遺伝子あるいは BRAF 遺伝子変異の うち V600 以外の変異に対しては trametinib. NRAS 遺伝子変異に対しては binimetinib が記載されている. それらのうち本邦において保険適用で薬剤が使用可能 なのは、NTRK融合遺伝子に対する larotrectinib と entrectinib のみである. その他の薬剤に関しては、遺 伝子パネル検査を施行し、エキスパートパネルでの推 奨を受けた上で, 臨床試験あるいは患者申出療養の枠 組みの中で使用する必要があることに注意が必要であ る.

3.2 病期別の経過観察指針

経過観察に関しては、異なる経過観察の方法をランダム化して検証した試験はなく、学術組織ごとあるいは国ごとにメラノーマの性質に基づいた経過観察指針を提案している。本章では、NCCN ガイドライン³³⁾や欧州共同ガイドライン(the European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO)、the European Organization for

Research and Treatment of Cancer (EORTC) の共 同ガイドライン)53)での記載を紹介し(図7),本邦での 患者に使用する際に注意すべき点について適宜解説を 加える形で記載する. なお, 経過観察期間に関しては, NCCN ガイドラインでは各病期共通で、「5年経過後も 臨床的に必要なら続けるが、基本的に一生涯」と注釈 されている. 欧州共同ガイドラインでは各病期共通で 「少なくとも5~10年(少なくとも5年:ガイドライン 委員の投票で100%が賛成,少なくとも10年:ガイド ライン内での投票で85%が賛成) と記載されている. 欧米では前述の通り、皮膚メラノーマの既往がある場 合の新規皮膚メラノーマ原発巣の発生リスクは一般集 団より8~9倍上昇し46.47), そのリスクは年々減少する ものの20年以上続くとされるため46,長期経過観察の 推奨は妥当と考えられる. 本邦患者には当てはまらな い可能性はあるものの、メラノーマでは新規転移性病 変の90%が経過観察開始後5年以内に起こり5年以降 も新規発生することを鑑みればい、本邦においても再 発, 転移リスクの高い症例においては, 可能ならば5 年,5年経過後も臨床的に必要なら経過観察を続ける といった欧米のガイドラインに準じた経過観察期間を 設けるのがよいと思われる.

(1) 病期 0

欧州共同ガイドラインでは病期 0 における経過観察 指針は示されていないが、NCCN ガイドラインでは少 なくとも年1回の身体診察を行うとされている³³.身体診察では皮膚に重点をおいて診察を行うと記載されており、原発巣切除痕やその周囲皮膚の診察ならびに病変部以外の皮膚全体の観察を行うことが推奨されている。前述の新規メラノーマの発生リスクが本邦患者に当てはまるかどうかは不明ということを考慮すれば、本邦において病変部以外の皮膚全体の観察を行うことに関しては必須とまではいえない。検査に関してはルーチンでの血液検査や画像検査は推奨されていない。

(2) 病期 [

病期 IA に関しては、欧州共同ガイドラインでは経過観察開始後3年間は6カ月ごと、その後は年1回の身体診察を行うと記載され、NCCNガイドラインでは5年間は6~12カ月ごと、以降は年1回の身体診察を行うと記載されている330.病期IBに関しては、欧州共同ガイドラインでは3年間は3~6カ月ごと、4~10年目は6カ月ごと、以降は年1回の身体診察を行うと記載され、NCCNガイドラインでは5年間は6~12カ月ごと、以降は年1回の身体診察を行うと記載されている。病期Iのメラノーマでは、再発を起こした症例の87%が身体診察で見つかったとする後ろ向き研究があり⁶³⁰、身体診察の重要性は両ガイドラインで同様に言及されており、身体診察時には皮膚とともに領域リンパ節にも重きをおいた診察を推奨している。

病期IAに関しては、両ガイドラインともにルーチンでの血液検査や画像検査は推奨しない方針である.

病期 IB に関しては、NCCN ガイドラインではルー チンでの血液検査、画像検査は推奨せず、特異的な症 状があれば精査のための画像検査を行うとしている. 一方、欧州共同ガイドラインでは4年以降は推奨する 検査を規定していないが, 経過観察開始後3年間は3~ 6カ月ごとのLDH, S-100の血液検査, 6カ月ごとのリ ンパ節に対するエコー検査を検討すると記載されてい る. LDH, S-100 に関してはメラノーマの予後予測因 子として知られたバイオマーカーであり、ともにメラ ノーマの腫瘍量と比例して血清中の濃度が上昇するた め^{64,65)}, 再発監視のマーカーとして期待されてきた. 簡 便に測定できるという利点はあるものの, LDH に関し ては感度, 特異度の点で正確性に欠ける^{66~68)}. S-100 に 関しては感度が低いが特異度は高いという報告はある ものの69, 測定時の肝機能, 腎機能, 心機能などに測 定値が左右される70,71)ため、さらなる検証が必要と考え られている.以上より,LDHやS-100を重視した経過 観察は行うべきではなく、あくまでも補助的な参考所見にとどまると認識して使用する必要がある。エコー検査の、リンパ節転移検出能は、触診や CT、PET/CT よりも優れており、その感度は 96%、特異度は 99% であったとメタアナリシスにて報告されている 39 . リンパ節転移検出のための有用な検査であるが、一方で病期 $IB\sim IIA$ の定期経過観察にエコー検査を使用したところ予後改善効果は見られなかったとするコホート研究もあるため 72 、NCCN ガイドラインでは病期 $0\sim IIA$ においてエコー検査を推奨するに至っていない.

(3) 病期Ⅱ

病期 IIA に関しては、欧州共同ガイドラインでは 3 年間は $3\sim6$ カ月ごと、 $4\sim10$ 年目は 6 カ月ごと、以降 は年 1 回の身体診察を行うと記載され、NCCN ガイドラインでは 5 年間は $6\sim12$ カ月ごと、以降は年 1 回の身体診察を行うと記載されている 3^{33} .

病期 IIB に関しては、欧州共同ガイドラインでは3年間は3~6カ月ごと、4~10年目は6カ月ごと、以降は年1回の身体診察を行うと記載され、NCCNガイドラインでは2年間は3~6カ月ごと、3~5年目は3~12カ月ごと、以降は臨床的に必要なら年1回の身体診察を行うと記載されている。

病期 IIC に関しては、欧州共同ガイドラインでは3年間は3カ月ごと、4~10年目は6カ月ごと、以降は年1回の身体診察を行うと記載され、NCCNガイドラインでは2年間は3~6カ月ごと、3~5年目は3~12カ月ごと、以降は臨床的に必要なら年1回の身体診察を行うと記載されている。両ガイドラインともに、病期 IIC では再発、転移が起こる確率が上昇するため、後述する病期 III、IV と同様の間隔での経過観察を推奨している。また両ガイドラインともに、身体診察時には病期 I と同様に、皮膚とともに領域リンパ節にも重きをおいた診察を勧めている。

検査に関しては、欧州共同ガイドラインでは、病期 IIA、IIB には3年間は3~6カ月ごとのLDH、S-100 の血液検査を行うとともに6カ月ごとのリンパ節に対するエコー検査を施行し、その他の画像検査は推奨していない。病期IICには3年間は3~6カ月ごとのLDH、S-100 の血液検査、3~6カ月ごとのリンパ節に対するエコー検査、6カ月ごとのCT などの画像検査を推奨すると記載している。いずれも4年目以降は推奨する検査を規定していない。NCCN ガイドラインでは、病期 IIA に対しては特異的な症状があれば精査のための画像検査を行い、ルーチンでの血液検査、画像検査は

推奨していない. 病期 IIB, IIC に対してはルーチンでの血液検査は推奨しないが, 2年間は3~12カ月ごと, 3~5年目は6~12カ月ごとのスクリーニング画像検査を考慮すると記載している. スクリーニング画像検査では, 領域リンパ節に対するエコー検査, 胸部~骨盤鼠径部(必要があれば頸部も入れて)の造影 CT, 全身の PET/CT, 脳の造影 MRI の中から検査を適宜選択し組み合わせて, 全身を確認することが推奨されている.

(4) 病期 III, IV

病期 III, IV ともに欧州共同ガイドラインでは3年間は3カ月ごと、 $4\sim10$ 年目は6カ月ごと、以降は年1回の身体診察を行うことが推奨されている。NCCNガイドラインでは2年間は $3\sim6$ カ月ごと、 $3\sim5$ 年目は $3\sim12$ カ月ごと、以降は臨床的に必要なら年1回の身体診察を行うことが推奨されている 33 、身体診察では皮膚や領域リンパ節に重点をおき診察を行う。

検査に関しては、病期 III、病期 IV ともに欧州共同 ガイドラインでは3年間は3~6カ月ごとのLDH, S-100 の血液検査. 3~6 カ月ごとのリンパ節に対する エコー検査, 6カ月ごとの CT などの画像検査が推奨 されている. NCCN ガイドラインでは2年間は3~12 カ月ごと、3~5年目は6~12カ月ごとのスクリーニン グ画像検査を考慮すると記載されている。 スクリーニ ング画像検査の内容としては、病期 II と同様で、領域 リンパ節に対するエコー検査, 胸部~骨盤鼠径部(必 要があれば頸部も入れて)の造影 CT. 全身の PET/ CT, 脳の造影 MRI を適宜組み合わせて全身を確認す る. なお. NCCN ガイドラインでは、特にセンチネル リンパ節転移陽性であったがリンパ節郭清を施行しな かった症例に関しては第 III 相ランダム化比較試験で の経過観察法にもとづいて厳重に経過観察すべきであ ると注釈している. 具体的には領域リンパ節に対する エコー検査を2年間は4カ月ごと、3~5年目までは6 カ月ごと、以降は12カ月ごとに行う590. 本経過観察法 については、本邦と欧米で病型が異なるため、本邦患 者にとって適切かという点は議論の余地があるもの の、念頭においておきたい経過観察法である.

3.3 おわりに

病期別の治療アルゴリズムに関しては NCCN ガイドライン³³⁾を、病期別の経過観察方針に関しては NCCN ガイドラインならびに欧州共同ガイドラインを概説した。これらは本邦でのメラノーマ診療におい

て大いに参考となるが、基本的に欧米の皮膚原発メラ ノーマに関するエビデンスに基づいており、本邦では 粘膜メラノーマ、末端型メラノーマの割合が高いこと に留意が必要である. 粘膜メラノーマに関しては皮膚 メラノーマと類似した遺伝子変異を呈することもある が、皮膚メラノーマと同等に扱えるとするエビデンス にはまだ乏しく、治療ならびに経過観察方針に関して も今後のエビデンスの蓄積が待たれる. また末端型メ ラノーマに関しても欧米での割合は2~3%と非常に 低いため73)、本邦の末端型メラノーマに欧米の治療ア ルゴリズム、経過観察方針をそのまま適応しても良い か否かは今後も引き続き検証していく必要がある. 末 端型のみならずその他の病型のメラノーマに関して も、本邦発のさまざまな臨床研究を行い、その結果を もって本邦独自のメラノーマに対する治療指針ならび に経過観察方針を策定していくことが将来のガイドラ イン改訂でも必要となる.

4. 手術療法

4.1 はじめに

免疫チェックポイント阻害薬や分子標的薬の登場に よってメラノーマの転移治療や周術期治療は大きな変 革を迎えた. しかし, 手術療法が早期のメラノーマに 対して最も有効な治療法であることに変わりはなく, 高い局所制御と生存期間の改善が得られる. 特に、病 期 IIA までのメラノーマに対しては免疫チェックポイ ント阻害薬や分子標的薬による術前・術後補助療法は 世界的にも推奨されておらず、手術療法単独での治療 が主軸となる. 本章では新規全身療法時代における原 発巣切除および転移巣切除の歴史的経緯と現在の治療 手段としての意義について概説する。なお、本ガイド ライン執筆時点において、本邦では術前補助療法はま だ行われていないが、海外では精力的に臨床試験が行 われている. NCCN ガイドライン33)や American Society of Clinical Oncology (ASCO) のガイドライン⁷⁴⁾で はすでに特定の条件下での術前補助療法が推奨されて いる. 今後術前補助療法の発展に伴い, 手術療法の考 え方が大きく変わる可能性があることに留意されたい.

4.2 原発巣切除、転移巣切除の適応と目的

あらゆる病期の病変が手術療法の対象となり得る. 原発巣切除については病期0~III(AJCC 第8版),転 移巣切除においては病期IVの完全切除が可能なオリ

59 側ブ	ケマージンに関する	ランダム(比較試験						
報告年	報告者 (文献番号)	患者数	腫瘍の厚さ (mm)	側方マージン (cm)	局所再発 発生頻度	無病生存 期間	全生存 期間	原発部位	末端型 メラノーマ数
1988	Veronesi et al. (75)	612	≤2	1 vs 3以上	有意差 なし	有意差 なし	有意差なし	体幹・四肢	記載なし
1991	Veronesi et al. (76)								
1998	Cascinelli et al. (77)								
1996	Ringborg et al. (78)	989	0.8~2	2 vs 5	有意差 なし	有意差 なし	有意差なし	体幹・四肢 (手足と外陰部は	6 (誤って登録)
2000	Cohn-Cedermark et al. (79)							除外)	
1993	Balch et al. (80)	468	1~4	2 vs 4	有意差なし	有意差 なし	有意差なし	体幹・上腕・大腿 (掌蹠と爪は除外)	記載なし
1996	Karakousis et al. (81)								
2001	Balch et al. (82)								
2003	Khayat et al. (83)	326	≤2	2 vs 5	有意差なし	有意差なし	有意差なし	掌蹠以外	0
2011	Gillgren et al. (84)	936	> 2	2 vs 4	有意差 なし	——— 有意差 なし	有意差 なし	体幹·四肢	2
2019	Utjés et al. (85)								
2004	Thomas et al. (86)	900	> 2	1 vs 3	有意差 あり	有意差 なし	有意差なし	体幹·四肢	0
2016	Hayes et al. (87)								

20	ガイドラインが推奨 方マージン
TT (mm)	側方マージン (cm)
in situ TT ≤ 1 1 < TT ≤ 2 2 < TT ≤ 4	0.5~1 1 1~2* 2
	2 アンション アンター アンター アンター アンター アンター アンター アンター アンタ
る臨床試験が進 験,NCTO386 TT:tumorth	,

ゴ転移が根治切除の対象となる。症状緩和のための姑息的な原発巣・遠隔転移巣切除も手術療法の適応のひとつである。原発巣切除においては局所制御および治癒が目的であり、転移巣切除においては局所制御および無再発生存期間・全生存期間の延長が目的である。病期 IIA までの原発巣の切除では手術療法を単独で行うが、病期 IIB 以上の病変に対しては原発巣や転移巣切除に加え、本邦でも術後補助療法を組み合わせて用いることができる。術後補助療法については別項で詳述する。

4.3 原発巣切除

(1) 側方マージン

側方マージンについてはこれまで複数のランダム化比較試験が行われており、過剰な拡大切除を行っても局所再発率や無再発生存期間、全生存期間が改善しないことが明らかとなっている(表 9) $^{75-87}$. 本ガイドライン執筆時の NCCN ガイドラインでは tumor thickness ごとに側方マージンが設定されており、in situでは $0.5\sim1$ cm、tumor thickness が 1.0 mm 以下で 1 cm、1.0 mm より厚く 2.0 mm 以下の場合で $1\sim2$ cm、2 mm より厚い場合には 2 cm となっている(表 10) 33 . なお、tumor thickness が $1\sim2$ mm の推奨に関しては、側方マージン 1 cm と 2 cm を比較する前向き試験が進行中である(MelMarT-II、NCT03860883) 88 .

In situ 病変については、本邦のガイドライン第 2 版では in situ 病変の切除マージンは $0.3\sim0.5$ cm の推奨だったが、第 2 版以降に in situ 病変の側方マージンに関する論文がいくつか報告された $^{89-91}$). 悪性黒子または悪性黒子型メラノーマ 6,330 例の側方マージンを検討したメタアナリシスでは 5 mm マージン切除での断端陰性率は $59\%\sim83\%$ だった 102 0. 2021 年に報告された

レビュー論文 103 では、in situ 病変であっても 10 mm以上の側方マージンが必要になる場合があることが述べられている。また、1,120 例の in situ メラノーマを解析した研究では 6 mm マージンでの断端陰性率は 86% で、9 mm マージンの 98.9% に有意に劣っていた 104 . これら新たなエビデンスや、本邦以外の多くの国のガイドライン $^{33.105}$ の推奨側方マージンが 5 mm 以上で設定されている状況も鑑み、本第 4 版では NCCN に準じた $0.5\sim1.0$ cm とした。したがって本ガイドラインの側方マージンの推奨は NCCN と同じとなる。なお、切除可能な病期 III における原発巣の切除マージンに関しては、ESMO のガイドラインでは再建術を行わないで済む範囲(単純縫縮できる範囲)での切除を行うことが推奨され、目標の側方マージンとして 1 cm が挙げられている 92 .

(2) 深部マージン

2013年の筋膜切除群と筋膜温存群を比較検討した後ろ向き研究によれば、両群間で局所制御と予後の有意な差は認められなかった⁹³. 筋膜切除群で術後合併症が多く発生することから、現在では下床の筋膜を温存して脂肪織全層で切除することが一般的となっている. 一方で深部マージンを検討した前向き研究は存在せず、結果の解釈には選択バイアスを加味する必要がある. 画一的に筋膜を切除することは勧められないが、腫瘍深部から筋膜までの距離は、原発部位や tumor thickness, body-mass index, 脂肪織の厚さなどによって様々であり、深部マージンが安全に確保できない場合には筋膜を合併切除するなど症例ごとに判断する必要がある.

(3) メラノーマの病型や発生部位と切除マージン

上述したように現在のガイドラインの推奨マージンの元になった前向き研究では、主に体幹や掌蹠を除いた四肢に生じた表在拡大型と結節型が主体である。末端型や悪性黒子型などの病型にもこれらの推奨マージンを外挿して用いているが、十分なエビデンスがあるわけではなく、個々の症例に応じて考える必要がある.以下に各病型や部位ごとの後ろ向き研究結果を紹介する.

1)末端型メラノーマ

本邦メラノーマの最多病型である末端型ではときに 浸潤性結節の周囲に広く淡い黒色斑が形成される.浸 潤部分は一部にもかかわらず表皮内病変と思われる周 囲の黒色斑から推奨マージンを取って広く切除するべ きかどうかという点もまだ解決されていない⁹⁴⁾.末端 型メラノーマ 129 例の切除マージンを解析した韓国からの報告では、tumor thickness が 1 mm 以下の病変においては、1 cm 以下のマージンとそれ以上の群のいずれにも局所再発や in-transit 転移、領域リンパ節転移、遠隔転移は見られなかった。一方で、1 mm より厚い病変では 2 cm マージン切除が縮小マージン切除と比較して有意に局所制御が良好だったものの、無病生存期間、メラノーマ特異的生存期間には両群間に差がなかった。50. さらに、T3、T4の厚い病変に対する側方マージンを検討した中国からの報告では 207 症例の末端型メラノーマが解析され、多変量解析で縮小マージン切除(1~2 cm)でも全生存期間、無病生存期間が短縮しておらず、比較的安全に切除マージンを縮小できるかもしれないと述べられている。50.

2) 爪部メラノーマ

浸潤のない爪部メラノーマに関しては指趾骨温存手 術も行われているが、浸潤のある爪部メラノーマに対 しては指趾切断術が広く行われている現状がある. 解 剖学的に爪母・爪床と末節骨は近接しているものの, 浸潤がある場合であっても骨まで侵されていない場合 がある. このため、浸潤性爪部メラノーマに対する指 趾骨温存手術も試みられている^{97,98)}. 140 例の爪部メラ ノーマの術後経過をまとめた韓国の後ろ向き観察研究 では、tumor thickness が 0.8 mm 未満の微小浸潤メラ ノーマに対して指趾骨温存手術を行って良いのではな いかと述べられている****). また, 爪部の上皮内メラノー マに対するモーズ手術、指趾骨温存手術、指趾切断術 を比較したメタアナリシスでは3つの治療間に局所再 発率の差はなかった99. 今後は微小浸潤までの爪部メ ラノーマに対しては指趾骨温存手術がより一般的に なってくる可能性がある. 本邦における前向き臨床試 験(JCOG1602, J-NAIL)の結果も期待される.

3) 悪性黒子・悪性黒子型メラノーマ

顔面露光部に好発する悪性黒子・悪性黒子型メラノーマでは解剖学的・整容的制約から十分な切除マージンを取ることができないことも多い。前述の 6,330 患者を解析したメタアナリシスでは,ガイドライン推奨の側方マージンでは 21.6%~44.6% の症例で不十分だったと報告されている⁸⁹⁾. 一方で 345 例を後ろ向きに解析したオランダの研究では縮小マージン切除でも無病生存期間やメラノーマ特異的生存期間に有意な影響はなかった¹⁰⁰⁾.

4) Desmoplastic melanoma

Desmoplastic melanoma は非常に稀な亜型であり、

遠隔転移は少ないものの腫瘍辺縁の不明瞭さから局所再発のリスクが高いとされる¹⁰¹⁾. 3,141 例でメタアナリシスを行った最近の論文では、局所拡大切除の局所再発率は21%と高値であるものの、病理学的な断端陰性を達成できた場合には局所再発率が有意に減少する(再発率11%, P<0.01)と報告されている¹⁰¹⁾.

4.4 オリゴ転移や in-transit 転移を対象とした 転移巣切除

メラノーマに対する有効な薬物療法が使用可能となった現在、根治切除可能なオリゴ転移やin-transit 転移に対しては、転移巣切除後に術後補助療法を行うか、切除を行わずに転移巣への治療として薬物療法を行うかの選択となると考えられるが、これらを直接比較した前向き試験はない。したがって、転移巣切除の生存解析を行った後ろ向き研究の結果や手術侵襲、病勢などを考慮して個別に検討する必要がある。これまでの後ろ向き研究の結果からは切除可能群の予後は手術療法を行わなかった群よりも概して良好であることが報告されているが、選択バイアスが強く働いている可能性には留意すべきである¹⁰²⁾.

(1) in-transit 転移

メラノーマ患者の 4%~10% に in-transit 転移や衛星 転移が生じるとされる ¹⁰³⁾. 遠隔転移のない患者の in-transit 転移には手術療法が第一選択となるが、in-transit 転移に対する非手術療法に関しては質の高いエビデンスはない。カナダ・オンタリオ州からのガイドラインでは、概ね 4 個までの表在性病変には病理学的に陰性断端を確保できるような切除を行うことが推奨され、術後補助療法を検討して良いと記載されている。一方で、広範囲にわたる 5 個以上の病変や 1 週間以内に新生している場合、皮下深部に数センチの腫瘤を複数形成している場合などは手術療法以外の治療を考慮することが推奨されている ¹⁰³⁾.

(2) 肺転移

肺転移の切除に関しては遠隔転移の中で最も検証されている^{104~109)}. 945 例の肺転移患者を解析した報告では、多変量解析で肺転移の完全切除が有意な予後良好因子であり、切除を行うことで5年生存率が4%から20%に改善する可能性が示唆されている¹⁰⁴⁾. 肺転移患者984 例を検討した報告でも同様の結果であり、肺転移の切除を行った群の5年生存率は27%であったが、切除を行わなかった群では3%であった¹⁰⁵⁾. 肺転移に対する手術療法を受けた328 例の肺転移患者を解析し

た報告では、原発巣切除後3年以内の肺転移と複数個の肺転移が予後不良因子であり、転移巣の不完全切除となった患者には長期生存者はいなかったが、予後不良因子が無く完全切除できた患者の5年生存率は29%だった¹⁰⁶⁾. その他の後ろ向き研究でも概ね同様の結果が報告されている^{107~109)}. ただし、肺外転移のある患者も含めて解析している論文もあり¹²⁰⁾, 全身および肺転移の腫瘍量や全身状態など、完全切除群と非(完全)切除群の背景因子の違いには注意が必要である.

(3) 肝転移

肝転移を生じたメラノーマ患者は全生存期間中央値が1~8カ月ときわめて予後不良とされてきた¹¹⁰⁾. 13編の論文のメタアナリシスを行った 2022 年の報告では、切除を行った群では非切除群と比べて全生存期間が有意に延長していたと述べられている¹¹⁰⁾. ただしこのメタアナリシスに含まれている皮膚メラノーマの割合は 55.9% であり、ぶどう膜原発が 37.6% も含まれていることに注意が必要である。また、やはり両群間の背景因子の違いにも留意されたい.

(4) 消化管およびその他の腹腔内転移

頻度は低いものの、肝臓以外の腹腔内臓器や消化管にもメラノーマの転移が初発することがある^{102,111)}.54 例の消化管転移に多変量解析を行った報告では、根治切除の達成と単発転移がそれぞれ有意な予後良好因子であった¹¹¹⁾.さらに腹腔内転移を生じた1,623 例で多変量解析を行った報告では、転移巣切除(ハザード比0.59、P<0.001)と消化管転移(ハザード比0.65、P<0.004)が全生存期間延長と関連していた¹⁰²⁾.

(5) 脳転移

脳転移に対しては転移巣の大きさや個数,中枢神経症状の有無などにより,放射線療法,薬物療法,手術療法などを組み合わせて治療することが多い^{33,112)}.手術療法が優先される状況としては,腫瘍が大きく中枢神経症状を伴う場合,単発で切除可能な領域に発生した場合,組織診断や遺伝子検査のために腫瘍組織を採取する必要がある場合などである^{33,112)}.

4.5 おわりに

メラノーマに対する有効な全身療法が使えるようになった現在においても、一連のメラノーマ治療の中で手術療法は依然として重要な役割を果たしている. Tumor thickness に応じた側方マージンの設定根拠には十分なエビデンスがある一方、これらのエビデンスの基となった試験に含まれない病型や発症部位に関し ては未だ今後の検討課題である。また、オリゴ転移に 関しても薬物療法のみと切除後の術後補助療法とを比 較したデータは乏しい。転移病変がある場合、薬物療 法を先行させ腫瘍への治療効果をみてから切除を検討 することも可能ではあるが、いずれの方法が最適なの かエビデンスの構築が待たれる。

5. 手術療法: センチネルリンパ節生検・領域 リンパ節郭清

5.1 概説

メラノーマ診療におけるセンチネルリンパ節生検 (sentinel lymph node biopsy: SLNB) や領域リンパ 節郭清 (completion lymph node dissection: CLND) に対する考え方は、近年大きな転換期を迎えた. その きっかけになったのが、複数の国際的な多施設共同前 向きランダム化比較試験(randomized control trial: RCT) で、2014年にはSLNBの有用性を検証した国際 多施設共同研究(Multicenter Selective Lymphadenectomy Trial-I (MSLT-I)) が報告され⁶⁰⁾, その意義や適 応が明確になった. また、2017年には早期 CLND の 意義を検証した国際多施設共同研究 (MSLT-II) が報 告され59. センチネルリンパ節転移陽性例に対する早 期 CLND が生命予後を改善するものではなく, リンパ 浮腫に代表される有害事象も問題となるとする見解が 示された. ドイツでも早期 CLND に関する同様の RCT (German Dermatologic Cooperative Oncology Group (DeCOG)-SLT trial) が行われ、6年という比較的長期 的な経過観察においても生存期間の延長が得られな かった¹¹³⁾.

このような背景を踏まえ、前版ガイドラインでは、"センチネルリンパ節転移陽性例にリンパ節郭清を実施しないことを提案する"という推奨とし^{3,4}、CLNDに対する考え方に大きな変革がもたらされた。NCCNをはじめ欧州やオーストラリアなど世界各国のガイドラインにおいても、CLNDの適応や考え方に大幅な変更が加えられ、特に転移巣の腫瘍量(tumor burden)の少ないSLNB微小転移例ではCLNDは行わないと明示しているものもある³²⁾。もっとも、MSLT-II、DeCOG-SLTでのSLNB陽性例は、腫瘍量が1mm以下の微小転移例の割合が多く、そのために生命予後に有意差を生じなかった可能性も考えられる。また、国際多施設共同研究が欧米における研究となるため、末端型メラ

ノーマの割合が半数を占める本邦や東アジア諸国とは 病型が全く異なる。末端型メラノーマは、欧米で多い low-CSDよりも領域リンパ節転移を生じやすく、予後 不良であることが知られており^{114,115)}、欧米主体の臨床 研究に基づいたエビデンスをそのまま当てはめて良い か、今後の検討課題とされてきた³⁾。そのため、本邦や 病型の近い東アジア諸国における症例集積研究や SLN 転移巣腫瘍厚の厚い症例に関する検討が必要と 考えられた。

前版ガイドライン公開以降の新たなエビデンスとして、米国大規模コホート研究(下肢原発例を約30%含む)¹¹⁶⁾、2017年までの論文15編を含むメタアナリシス¹¹⁷⁾、18歳以下の小児期~青年期発症メラノーマに対するSLNB陽性例へのCLNDの意義についての検討報告¹¹⁸⁾があるが、いずれも生命予後の改善には寄与しなかったと結論付けている。また、MSLT-II から除外された微小衛星転移病変やリンパ節の節外浸潤例、3つ以上のセンチネルリンパ節転移陽性例といった高リスク群についても同様の検討が行われたが、術後18カ月時点での評価で、CLNDの生命予後延長効果は得られていない¹¹⁹⁾・

欧米と異なり各病型の割合が各国で近似するアジア 圏からの報告に目を向けると、本邦からは、松井らが 59 例 (末端型メラノーマを約30%含む) の後ろ向き 研究, 中国からは 130 例(末端型メラノーマを約 60% 含む)の後ろ向きコホート研究を報告されているが, いずれも早期 CLND による生命予後延長効果は認め なかったとしている120,121). 一方, 台湾からは7割の末 端型を含む 227 例 (末端型メラノーマを約70% 含む) のコホート研究が報告され、経過観察群に比べて早期 CLND群で有意に疾患特異的生存期間の延長が得られ たと報告している122). 本邦を含めた東アジア諸国にお ける, 研究の質の高いエビデンス構築が, 今後の東ア ジア圏における SLNB, CLND の治療方針標準化に大 きな意義を持つものと思われる. 東アジアにおける国 際的な多施設共同 RCT や大規模後ろ向き症例集積研 究の遂行が必要になると考えられる.


5.2 センチネルリンパ節生検(SLNB)

(1) センチネルリンパ節とは

センチネルリンパ節(sentinel lymph node:SLN) とは、腫瘍原発巣からのリンパ流が最初に到達するリ ンパ節である。これらのリンパ節に転移を認めなけれ ば、それより下流の領域リンパ節への転移は無い可能

図8 RI法によるセンチネルリンパ節生検

- (a) リンパシンチグラフィーでの hot node の確認
- (b) SLN の摘出を行い、放射性活性を計測する。

性が高いと考え,不必要な予防的 CLND を回避する低侵襲治療としてメラノーマにも応用される様になった¹²³⁾.

(2) SLNB の適応・意義

SLNBにて摘出したSLN内の腫瘍細胞の微小転移の 有無は、再発や生存期間に関連する強力な予後因子と され60). 領域リンパ節転移のコントロールにも寄与す るとされる. NCCN ガイドラインでは³³⁾, T2a 病変や 病期 II (TT>1 mm, any feature, N0) で「話し合い の中で提案する」(discuss and offer), T1b 病変 (TT <0.8 mm, 潰瘍あり, TT: 0.8~1.0 mm) では「話し 合いの中で考慮する」(discuss and consider) として いる. Tla 病変 (TT<0.8 mm, 潰瘍なし) について は、SLN への転移率が5%以下として基本的には推奨 していないが、TT≥0.5 mm で 42 歳以下、頭頸部原 発、リンパ管や血管浸潤を伴うもの、1 mm² あたり2 個以上の核分裂像を伴うものなどでは、転移率が5% 以上とされ、これらの特徴を持つものではセンチネル リンパ節生検を「話し合いの中で考慮する」と注釈し ている33).

(3) SLNB の方法

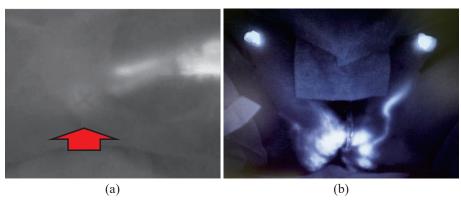
SLN の同定法には、色素法、radioisotope (RI) 法、indocyanine green (ICG) 蛍光法が挙げられる124.125). 色素法ではパテントブルーといった色素トレーサーを腫瘍近傍に皮内注射して、青染したリンパ管やリンパ節を同定する。簡便な手法ではあるが、色素法単独での SLN 同定率は術前に SLN の解剖学的位置を把握することができないこともあり 80% 程度に留まるため、RI 法など他の手法と組み合わせて、あるいは補助とし

て使用する124).

RI 法は、99mTc スズコロイドや 99mTc フチン酸といった RI トレーサーを使用して SLN を同定する手法で¹²⁶、術前に上記 RI トレーサーを用いたリンパシンチグラフィーを行い、RI が集積する hot node を確認し、SLN の解剖学的位置を評価する(図 8a)、術中はガンマプローブを術野で使用し、放射活性値を測定しながら SLN を同定し、摘出する(図 8b).一般的に放射活性値がバックグラウンドの 2 倍以上で、最高値の10% までのリンパ節を SLN とする¹²⁷.

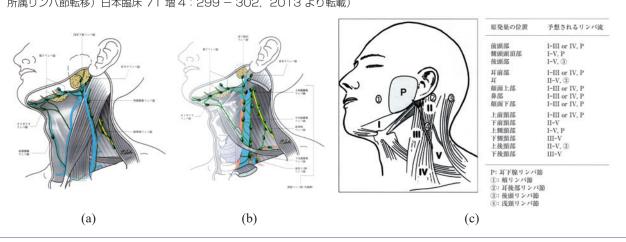
ICG 蛍光法は、ICG が血中のアルブミンと結合して生じる近赤外線領域の蛍光を医療用 Charge Coupled Device (CCD) カメラでリアルタイムに観察する手法で皮下1~2 cmの深さまでのリンパ流やリンパ節を同定出来る(図 9a)¹²⁵⁾. 原発巣と領域リンパ節が近い場合、RI 法では shine through 現象を生じて SLN の同定が難しいため、ICG 蛍光造影法が有用である. 体表からは表在性 SLN 観察に限定されるが、皮膚切開後の術野では CCD カメラで蛍光が観察できるため、RI 法との併用でさらなる同定率の向上が報告¹²⁸⁾されており、特に shine through 現象を生じやすい頭頸部や陰部周囲における有用性は高い^{129,130)}(図 9b).

(4) SLN の部位


1) 頭頸部

頭頸部のリンパ流は多様で、耳下腺リンパ節、頬部リンパ節、オトガイ下リンパ節、顎下リンパ節、耳介後部リンパ節、浅頸リンパ節、深頸リンパ節、後頭リンパ節、鎖骨上窩リンパ節など様々なリンパ節へのリンパ流が存在する^[31] (図 10a~c). 中顔面から頭部原発

図9 ICG 蛍光法によるセンチネルリンパ節生検


- (a) 皮下浅層のリンパ流並びに SLN(赤矢印)の確認
- (b) 陰部病変での施行例(赤矢印:摘出した SLN)

原発巣が SLN に近い場合,アイソトープ法では shine through 現象を生じる為,重要性が高い

図 10 頭頸部リンパ節の部位とリンパ流

- (a) 浅頸部リンパ節 (日本がん治療学会編:日本癌治療学会リンパ節規約,2002)
- (b) 深頸部リンパ節 (日本がん治療学会編:日本癌治療学会リンパ節規約,2002)
- (c) 頸部リンパ領域に対する原発巣と予想されるリンパ流(中村泰大 悪性黒色腫の治療 外科的治療 手術適応と方法論(原発巣,所属リンパ節転移)日本臨床 71 増4:299 302, 2013 より転載)

の症例では耳下腺リンパ節に「^{31, 132)}, 口唇周囲ではオトガイ下や顎下リンパ節に SLN を認めることが多い¹³³⁾. 耳介から後方の後頭部では、後頭リンパ節や深頸リンパ節の副神経リンパ節などに SLN を認めることが多い^{131, 132)} (図 10c).

2) 躯幹

駆幹では、頭頸部や四肢、左右、正背面の境界線が問題となり、各々の境界線に応じ、領域リンパ節も異なる(図11a)、境界領域に原発巣が存在する場合には、境界線を中心に幅2cmずつ、計4cmのバンドを設定して領域リンパ節を検討する必要があり、2~4領

域に領域リンパ節群がまたがる場合もある.そのため、 SLNBも複数領域を念頭に置いた検討が必要となり、 臍周囲の原発巣などでは、両側の腋窩・鼠径リンパ節 の4領域リンパ節群に SLN を認める可能性がある.

3) 上肢

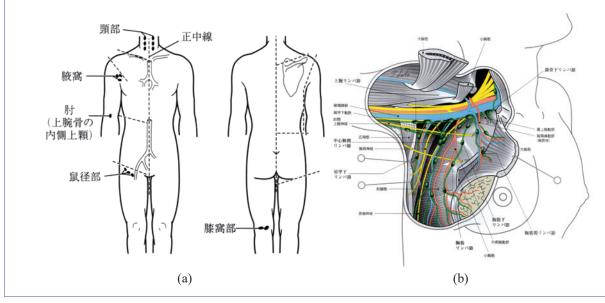

上肢の領域リンパ節は腋窩リンパ節から鎖骨上窩リンパ節までとなり、SLNのほとんどは小胸筋外側縁よりも外側となる level I 領域に存在するとされる¹³⁴⁾(図 11b). 腫瘍が橈側にあれば橈側皮静脈、尺側にあれば尺側皮静脈に沿ったリンパ流となることが多く、中央にあれば両者に沿うことがある。また、手の尺側背側

図 11 所属リンパ節の分布と腋窩リンパ節

(a) 所属リンパ節の部位と躯幹における区画の境界線

躯幹と頸部・上肢:鎖骨一肩峰一上肩一肩甲端,躯幹と下肢:鼠径一転子一殿裂. 正面での境界:臍と肋骨弓の中間, 背面での境界:胸椎の下縁(日本皮膚悪性腫瘍学会編:皮膚悪性腫瘍取り扱い規約 第2版 p9, 図 1a, 金原出版, 東京, 2010 より転載)

(b) 腋窩リンパ節 (日本がん治療学会編:日本癌治療学会リンパ節規約,2002)

や小指背側の原発巣では、肘リンパ節や¹³⁴、上腕中央の筋間中隔の mid-arm node といった interval node が SLN として検出される場合がある¹³⁵⁾. さらに、上腕部 や肩甲骨部の病変では、鎖骨下リンパ節といった本来 頸部リンパ節に分類される領域リンパ節群にもリンパ流を認め同部位に SLN が検出されることも報告されており¹³⁶⁾、RIトレーサーを用いた術前リンパシンチグラフィーを行っておくべきである.

4) 下肢

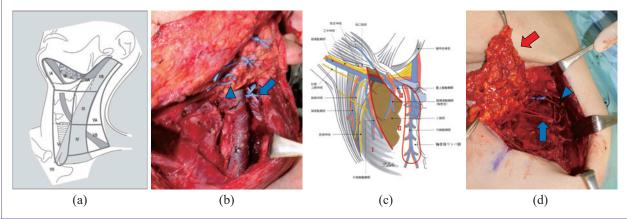
下肢の領域リンパ節は、鼠径・骨盤内リンパ節までとなるが、SLN の多くは sapheno-femoral junction の周囲かその内側に存在し、junction よりも末梢かつ大腿動脈外側にはリンパ流はほとんどなく転移も生じないとされる「35")。ただし、P (popliteal) 領域と呼ばれるアキレス腱部を含めた下腿屈側末梢の 2/3 付近から踵荷重部中枢側 1/2 や足底外側に原発巣が存在する場合には、膝窩リンパ節にもリンパ流を認めたり(serial drainage)、膝窩リンパ節と鼠径リンパ節に2系統のリンパ流が併存(parallel drainage)し、各々に SLN が存在する場合もあるため注意を要する「38.139")。下腿原発のメラノーマで膝窩リンパ節に転移を生じる確率は1~2%と稀であるものの「39.140")、その存在を見逃さないようにリンパシンチグラフィーによる hot spot の確認

は必須である.

5.3 領域リンパ節郭清 (CLND)

(1) 頸部リンパ節郭清術

頭頸部におけるリンパ節の分類には、米国耳鼻咽喉科・頭頸部外科学会 (AAO-HNS: American Academy of Otolaryngology-Head and Neck Surgery) における分類や日本癌治療学会リンパ節規約によるものなどがある (図 12a).


頸部リンパ節郭清術の術式は、以下のごとくに分けられている.

- ・根治的頸部リンパ節郭清術(radical neck dissection 以下 RND): 内頸静脈/副神経/胸鎖乳突筋などの非リンパ組織を一側頸部全域のリンパ組織と共に一塊として切除する.
- ・保存的頸部リンパ節郭清術 (modified radical neck dissection 以下 MRND): 少なくとも一つ以上の非リンパ組織 (内頸静脈/副神経/胸鎖乳突筋) を温存する.
- ・選択的頸部リンパ節郭清術 (selective neck dissection 以下 SND): 少なくとも一つ以上のリンパ節領域を温存し、領域を限定して行う.

臨床的に明らかなリンパ節転移を有する場合には、 RND を行っても再発率は高く¹⁴¹、MRND が望ましい

図 12 頸部と腋窩のリンパ節領域区分と郭清時所見

- (a) AAO-HNS 分類によるリンパ節領域 IとIV、IIとIIの境界は舌骨の高さであり、IIとIV、VAとVBの境界は輪状軟骨である (Robbins KT et al, Consensus statement on the classification and terminology of neck dissection. Arch Otolaryngol Head Neck Surg. 134:536-538, 2008より転載)
- (b) 保存的頸部リンパ節郭清術の施行時の局所所見(青矢印:副神経, 青三角:顔面神経下顎縁枝)
- (c) 腋窩リンパ節及びレベル区分(日本がん治療学会編:日本癌治療学会リンパ節規約,2002)
- (d) 腋窩リンパ節郭清術の施行時の局所所見(赤矢印:郭清組織,青矢印:上腕肋間神経,青三角:長胸神経)

とされる(図 12b) 142,143 . ただし、SLN 陽性例では転移が SLN のみにとどまることも報告され 144)、近年では SLD が選択されることも多い 145,146 . SND の郭清範囲については、原発巣とリンパ流を考慮した推奨範囲があり 147 、安全域を持って一塊に郭清組織を切除することが原則となる 145 . ただし、リンパ流には個人差があり、SPECT/CT や術中蛍光色素法などを用いて、リンパ流を確認した上で、郭清範囲を決定することが必要となる 146,147 .

一般的に、原発巣が鼻尖部などの顔面正中付近では 顎下リンパ節やオトガイ下リンパ節に¹³³⁾、眼瞼や頬部、 側頭部といった中顔面の原発巣では耳下腺内リンパ節 がSLNとして検出される、あるいは同リンパ節に転移 することが多い^{131, 132, 145, 147)}. また、後頭部の原発巣では 後頭リンパ節や副神経リンパ節に転移を生じやすい¹³³⁾.

(2) 腋窩リンパ節郭清術

腋窩は,内側を側胸壁,前壁を大胸筋と小胸筋,後壁を広背筋と肩甲下筋,外側壁を烏口腕筋と上腕筋, 頭側を腋窩静脈で囲まれた領域となる.

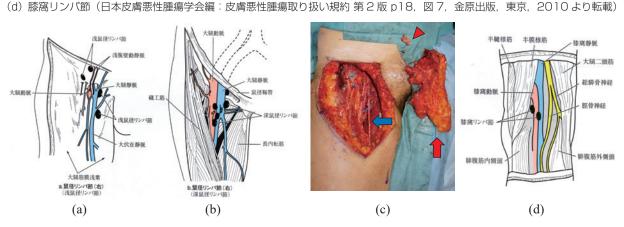
リンパ節の郭清範囲は、小胸筋を基準に下記の3つの領域に分けられている(図12c).

・Level I:小胸筋外側縁よりも外側の領域で、長胸神経と肋間上腕神経の交差部付近に最も多くリンパ節を認める。腋窩底面付近で肋間上腕神経と接する中心腋窩リンパ節に最も転移を生じやすい。

・Level II:小胸筋の幅に認める領域で、小胸筋背側

に存在する胸筋下リンパ節並びに大胸筋と小胸筋の間 に存在する胸筋間リンパ節(Rotter リンパ節)が存在 する. リンパ節のほとんどは胸肩峰動静脈の胸筋枝に 沿って認める.

・Level III:小胸筋内側縁よりも内側の領域で、腋 窩静脈に沿って存在する鎖骨下リンパ節が存在する.


郭清範囲については、海外においては Level I~III までの郭清が推奨されている 146,148 . しかし、SLN 陽性 例において Level I,II の郭清と Level I~III の全領域 の郭清で局所再発率に差がないとする報告 149 や Level III までの郭清は術後浮腫などの合併症の頻度も増す とされることなどから 150 、本邦では Level II までに留めることが多い 151 (図 12d). Level III の郭清については、画像上転移が疑わしい場合に検討される.

(3) 鼠径リンパ節郭清術

鼠径リンパ節郭清術ではリンパ節がレベル分類されておらず、皮下脂肪組織内に存在する浅筋膜(superficial fascia)と縫工筋・長内転筋深筋膜および鼠径靱帯より連続する大腿筋膜(fascia lata)の間に存在する浅鼠径リンパ節(図 13a)と、大腿深筋膜下の大腿動静脈に沿って存在する深鼠径リンパ節(図 13b)に分けられる。浅鼠径リンパ節の郭清範囲は、quadrilateral blockと呼ばれる4点(上外側点:上前腸骨棘の1cm上内側点、下外側点:上外側点から20cm尾側の点、上内側点:恥骨結節の頭側で外鼠径輪上縁の高さの点、下内側点:恥骨結節を通る大腿長軸方向の線と下

図 13 頸部と腋窩のリンパ節領域区分と郭清時所見

- (a) 浅鼠径リンパ節(日本皮膚悪性腫瘍学会編:皮膚悪性腫瘍取り扱い規約 第2版 p18, 図6,金原出版,東京,2010より転載)
- (b) 深鼠径リンパ節(日本皮膚悪性腫瘍学会編:皮膚悪性腫瘍取り扱い規約 第2版 p18,図6,金原出版,東京,2010より転載)
- (c) 鼠径リンパ節郭清術の施行時の局所所見(赤矢印:郭清組織,赤三角:Cloquet リンパ節,青矢印:大伏在静脈)

外側点を通る横方向の線の交点)で囲まれる領域とさ れてきた¹⁵²⁾. しかし, sapheno-femoral junction より末 梢で大腿動脈より外側の鼠径部外下方にはリンパ流や 転移をほとんど認めないといった報告137)も認める.

鼠径リンパ節郭清術では、皮膚壊死やリンパ漏、リ ンパ浮腫といった術後合併症が高頻度に生じるため、 皮膚切開の手法や大伏在静脈の温存153)といった手技的 な配慮が重要となる (図 13c).

(4) 膝窩リンパ節郭清術

下腿のメラノーマにおいて、膝窩リンパ節に転移を 認めた場合には郭清の対象となり得るが、その郭清範 囲は大腿二頭筋、半腱様筋、半膜様筋、腓腹筋で菱形 に囲まれた領域となる (図13d). 膝窩リンパ節郭清術 ではS状又はZ状の切開にて術野を広く確保しながら 施行し, 膝窩動静脈, 総腓骨神経, 脛骨神経を温存し ながら菱形部分のリンパ節を含む脂肪組織を郭清組織 として一塊に切除する (図 13d). 通常膝窩の神経, 血 管周囲の脂肪組織内に2~9個のリンパ節が存在する とされる¹⁵⁴⁾.

(5) 骨盤内リンパ節郭清術

下肢原発のメラノーマでは、鼠径リンパ節に加え骨 盤内リンパ節も領域リンパ節群となり、しばしば転移 を生じる. 骨盤内リンパ節郭清術の意義には様々な考 え方が存在するが155~158),前版(皮膚悪性腫瘍ガイドラ イン第3版メラノーマ診療ガイドライン20193では、 鼠径リンパ節郭清術への骨盤内リンパ節郭清術付加に つき予後延長への寄与が不明であり、与える手術侵襲 が大きくなることや術後リンパ浮腫といった有害事象 も生じることから159,「鼠径リンパ節郭清術施行例に対 し骨盤内リンパ節郭清術を行わないことを提案する| とした³⁾. NCCN ガイドラインにおいても³³⁾, 骨盤内リ ンパ節郭清術の予後延長への寄与は不明とされ、以前 は骨盤内リンパ節郭清付加の適応とされていた①臨床 上明らかな鼠径リンパ節腫大例、②鼠径リンパ節への 3個以上の転移例, ③ Cloquet リンパ節への転移陽性 例などにおいても、画像精査や薬物補助療法などを踏 まえた集学的チームによる検討が必要としている.

6. 放射線療法

6.1 はじめに

NCCN ガイドライン33などの治療方針に従えば、原 発巣や領域リンパ節など切除可能病変に対しては手術 療法が、切除不能な病変に対しては薬物療法が選択さ れ、放射線療法が標準治療として行われる機会は限定 的である. 免疫チェックポイント阻害薬や分子標的薬 の登場以前は切除不能病変に対して放射線療法が行わ れることもしばしばあったが、これらの新規薬物療法 が進行期治療で使用されるようになってから、放射線 療法の機会は減少している。また、前立腺癌や頭頸部 癌、子宮頸癌などでは、根治的放射線療法が標準治療 の選択肢のひとつとして確立している一方で、放射線 抵抗性腫瘍と考えられてきたメラノーマには、根治的 放射線療法という概念は確立していない. しかし, メ

報告者 報告年 ^{文献番号}	局所再発率				生存率			
	術後照射 なし	術後照射 あり	評価時期	 P値	術後照射 なし	術後照射 あり	評価 方法	P値
ランダム化比較試験								
Hendersonら2015 ¹⁶⁴	36%	21%	全経過	0.023	45%	40%	5年 OS	0.21
後ろ向き観察研究								
Moncrieff 5 2008169	6.1%	10.1%	6年	0.2	NA	NA		0.39
Agrawal 5 2009 ¹⁶⁵	48%	13%	5年	< 0.0001	30%	51%	5年DSS	< 0.0001
Martin § 2012 ¹⁷⁰	NA	NA		0.322	NA	NA		NA
Pinkham § 2013 ¹⁶⁶	NA	NA		0.01	NA	NA		NA
Danish & 2016 ¹⁶⁸	NA	NA		NA	34.4%	41.1%	5年 OS	0.64
Stromら2017 ¹⁶⁷	16.7%	5.0%	5年	0.036	NA	NA		NA

DSS=disease-specific survival, NA=not available, OS=overall survival.

ラノーマ治療における放射線療法の役割は低下してい るかといえば、むしろその重要性は増している. 免疫 チェックポイント阻害薬と放射線療法との併用により メラノーマに対する放射線感受性が高まると認識さ れ、アブスコパル効果(放射線療法によって照射野外 の病変も同時に縮小する現象) の報告も近年急増して いる160). がん治療において細胞性免疫機能が果たす役 割と放射線照射による免疫賦活効果は古くから実験的 に証明されており、放射線療法の効果発現には細胞性 免疫の関与することが実臨床でも示唆されている. 加 えて、放射線による免疫賦活効果は1回線量を多くし て行う寡分割照射において増強するとの報告もあり, 免疫チェックポイント阻害薬登場以前に行われていた 寡分割照射法の有効性が、近年になり実臨床を通じて 生物学的に裏付けられつつある。昨今、新規薬物療法 の有効性が次々と報告され、従来行われてきた放射線 療法の意義や役割も変化してゆくものと思われるが、 今後は放射線療法が「免疫賦活」という新たな役割を 担う可能性がある. 本章では、メラノーマにおける放 射線療法の適応につき, エビデンスに基づき概説する と共に、免疫賦活手段としての放射線療法の可能性に ついても言及する.

6.2 臨床的に明らかな領域リンパ節転移に対す る術後補助放射線療法

(1) 術後補助放射線療法の局所制御効果

メラノーマに適用される放射線療法のうち、領域リンパ節に対する術後補助療法が最もエビデンスが集積している。臨床的に明らかな領域リンパ節転移例に対してリンパ節郭清を行うことにより約1/3の症例で長期生存が得られる161~163)ことから、リンパ節郭清が現在

の標準治療であることは周知である. 一方で、局所制 御不能な領域リンパ節転移は、出血、感染、疼痛、四 肢浮腫などによる quality of life の低下をきたす原因 となることから、リンパ節郭清後に領域リンパ節再発 リスクの高い症例に対して、同領域への術後照射が検 討される. 術後補助放射線療法の有効性を検討した主 な報告の結果を表 11 に示す. 本ガイドラインの CQ6 で検討した通り、臨床的に明らかな領域リンパ節転移 が認められた場合には、 術後補助放射線療法によって 局所再発率の低下が期待できることが、Trans-Tasman Radiation Oncology Group (TROG) が行ったラ ンダム化比較試験164)により明らかになっている. Australian and New Zealand Intensive Care Society Clinical Trials Group (ANZMTG) 01.02/TROG 02.01 では、頸部、腋窩、鼠径のいずれかに臨床的に明らか な領域リンパ節転移を有しリンパ節郭清を受けた患者 を, 48 Gy/20 回の術後補助放射線療法ないし術後経過 観察の2群に割り付けした. 解析対象となった 109 例 の補助放射線療法群および 108 例の経過観察群の患者 のうち、初回再発としてそれぞれ20例(18%)と37 例(34%)に、経過観察中全体では23例(21%)と39 例(36%)に領域リンパ節再発が認められた。初回再 発も経過観察中の全再発もともに、術後補助放射線療 法群で有意に少なかった(初回再発:ハザード比(hazard ratio: HR) 0.52, 95% 信 頼 区 間 (confidential interval: CI) 0.33~0.88, P=0.023, 全再発: HR 0.54, 95% CI 0.33~0.89, P=0.021). しかし, 初回遠隔再発 $(52\% \text{ vs } 44\%, \text{ HR } 1.12, 95\% \text{ CI } 0.77 \sim 1.50, \text{ P} = 0.56),$ 全遠隔再発 (64% vs 62%, HR 1.07, 95% CI 0.77~ 1.50, P=0.73), 全生存期間はいずれも両群間に有意差 がみられなかった (5年生存率: 40% vs 45%, HR 1.27,

95% CI $0.89\sim1.79$, P=0.21). Grade 2以上の晩期有害事象として 42% に皮膚の、50% に皮下組織の有害事象が認められ、放射線療法群において有意に下肢の体積増加がみられた(15.0% vs 7.7%, P=0.014)が、grade 3以上の浮腫は腋窩(24% vs 14%, P=0.20)、鼠径(24% vs 17%, P=0.51)ともに、放射線療法の有無による有意差は認められなかった.

前述のランダム化比較試験に加えて、術後放射線療法による領域リンパ節再発率の低下は複数の後ろ向き観察研究でも報告されている「65~167」。また、術後放射線療法による全生存期間の改善効果を示唆する後ろ向き観察研究結果もあるが「65」、術後放射線療法による全生存期間改善効果を示す報告は少ない「68.169」。有害事象に関しても、Agrawalら「655」は領域リンパ節郭清後の術後放射線療法の付加により、付加なしよりも有害事象が有意に増加する(5年累積有害事象発生率20% vs 13%、P=0.004)と報告しているが、術後放射線療法の付加による有害事象の増加の有無が評価可能な報告をしている後ろ向き観察研究は少ない。

(2) 術後補助放射線療法の適応症例選択

本ガイドライン CQ6 では、病期 III 患者の領域リン パ節郭清後に局所再発リスクの高い患者に対しては術 後放射線療法を考慮することを提案している. 一方で 術後放射線療法を考慮すべき対象をより明確に決定す るのは困難である. 術後放射線療法による有害事象発 生率は領域リンパ節の部位によって異なる. 鼠径では 頸部や腋窩よりも有害事象発生率が高い傾向がみられ る164.165). さらには、領域リンパ節再発の高リスク因子 についても過去の報告で一定の見解はない。 TROG の ランダム化比較試験では、リンパ節転移数(4個以上)、 腫瘍最大径 (4 cm 超). 節外浸潤を領域リンパ節再発 の高リスク因子として割付調整しているが、最終解析 結果では高リスク因子となっていたのは節外浸潤だけ だった¹⁶⁴⁾. 一方、Agrawal らの後ろ向き観察研究で は、節外浸潤による領域リンパ節再発の差は認められ ず、転移リンパ節数(4個以上)が有意なリスク因子 であったと報告している165).

以上より、今後は治療対象となる領域リンパ節の有害事象発生率を考慮しつつ、より鋭敏な領域リンパ節再発の高リスク因子に関するエビデンスを集積することで、正確な術後放射線療法の適応を模索する必要があると考えられる.

(3) 寡分割照射法の効果

術後放射線療法の線量分割法の違いが、治療効果や

有害事象発生率に影響を与える可能性がある. 前述の 通り、放射線抵抗性のメラノーマには、放射線生物学 的観点から、1回線量を高くした寡分割照射法を用い る場合が多く、実際に、1回線量を高くした寡分割照 射法によって治療効果が増強する可能性が報告されて いる^{171,172)}. しかし, 2 Gy/回の通常分割法と寡分割照 射法とのいずれが優れているか、また、適切な1回線 量についての見解は定まっておらず、施設ごとに線量 分割法が異なる現状にある. さらには, 寡分割照射法 を採用すれば有害事象発生率が高くなる可能性がある ため、治療部位や放射線照射範囲によって線量分割を 個別に決定する必要がある. TROG のランダム化比較 試験¹⁶⁴⁾で採用されていた 48 Gv/20 回という方法は、 本邦で比較的多く行われていると思われる2 Gy/回で 総線量50~60 Gy を投与する線量分割法とは異なるた め、本試験での成績を本邦での線量分割法の成績と同 等として当てはめることはできない. その他の後ろ向 き観察研究では、多様な線量分割法で行われた結果を まとめて報告しており、どのような線量分割法が適切 なのかを判断することは難しい. Changらは、24~ 30 Gy/4~5 回/2.5 週と 2 Gy/回での 50~70 Gy の異な る線量分割法を後ろ向きに比較し、照射野内局所制御 率は両群とも87%で同等だったと報告している173).

6.3 原発巣に対する根治的放射線療法

放射線感受性が低いメラノーマの原発巣に対する放 射線療法として、NCCN ガイドラインでは³³⁾、64~ 70 Gy/32~35 回, 50~57.5 Gy/20~23 回, 35 Gy/5 回 などの線量分割法が示されているが33),標準的な方法 は決まっていない. 一般的には手術療法が第一選択と なるが、合併症などの理由により手術適応が無い場合 や、顔面病変などで美容的な理由により手術療法が難 しい場合、外陰部病変などで術後の機能障害が大きい ことが見込まれる場合などには、原発巣に対する根治 的な放射線療法が検討されることもある. Zurich 大学 からは、150例の悪性黒子もしくは悪性黒子型メラ ノーマ患者に対して低エネルギー X 線を用いて 3~4 日間隔で100~120 Gy/10~12回もしくは42~ 54 Gy/7~9 回の治療を原発巣もしくは術後局所再発 病変に対して行った後ろ向き研究の結果が報告されて いる174). 2年以上(平均8年)の経過観察をした101 例のうち, 再発は7例 (6.9%) に生じ, そのうち局所 再発が5例、領域リンパ節転移が2例であった. 再発 までの平均期間は45.6カ月だったと報告されている.

Princess Margaret Hospitalからの後ろ向き研究では、36 例の悪性黒子患者に対する表在 X 線を用いた原発巣に対する放射線療法により、経過観察期間中央値 6年で 32 例は無再発であり、5年局所制御率は 86% だった 175)。本報告でも線量分割法は多様であり、20 Gy/1回、35 Gy/5回、45 Gy/10回、50 Gy/15回などを用いたとしている。いずれの報告も、有害事象は軽度だったと報告している $^{174.175}$)。ただし、これらの報告で用いられた放射線は、現在ではほとんど用いられていない低エネルギー X 線であり、現在標準的に行われている放射線療法によっても有害事象が同等となるかは不明である。

6.4 特殊な放射線を用いた根治的放射線療法

重荷電粒子を用いた放射線療法は、加速エネルギーに応じた一定の距離を進むと止まってしまうために線量集中性が高いことと、X線に比較して2~3倍高い生物学的効果を有するために、X線抵抗性の腫瘍細胞に対しても有効である。このため、重粒子線治療(炭素イオン線治療)や陽子線治療、ホウ素中性子捕捉療法(boron neutron capture therapy:BNCT)といった、重荷電粒子を用いた根治的放射線療法がメラノーマに対する新たな治療様式として用いられることがある。

(1) 重粒子線治療

重粒子線治療はシンクロトロンを用いて光の速度の 約70%にまで加速した炭素イオン線を照射する放射 線療法である. 生物学的効果が高いために皮膚に対す る有害事象が問題となりやすく, 重粒子線を皮膚メラ ノーマに用いたとする大規模な報告はない. Zhangら はメラノーマ7例を含む皮膚がん45例に対する重粒子 線治療成績を後ろ向き研究で報告した¹⁷⁶⁾. 7~10 Gv RBE/回でメラノーマには総線量 61~75 Gy RBE, そ の他の腫瘍には 42.5~70 Gy RBE の治療を行い、3年 生存率はメラノーマで71.4%, 全コホートで86%だっ た. いずれの患者にも grade 3以上の晩期有害事象は 認められず、メラノーマの局所制御率は1年で85.7%、 3年で42.9%だったと報告している. 頭頸部粘膜メラ ノーマを対象とした多施設共同後ろ向き研究の報告で は, 57.6 Gy RBE/16 回およびその他の線量分割法で治 療を行った結果,5年局所制御率が72.3%,5年生存率 が 44.6% であったと報告している177). 一方で、本邦で の保険適用は骨軟部腫瘍, 前立腺癌, 頭頸部腫瘍 (口 腔・咽喉頭の扁平上皮癌を除く) に限られ、皮膚メラ ノーマは一般に適応外である. 現在, 重粒子線治療施 設は国内に7カ所のみ存在する(2023年 10 月現在).

(2) 陽子線治療

陽子線治療はシンクロトロンもしくはサイクロトロ ンを用いて水素原子核(陽子)を加速し、これを用い て行う放射線療法である. 古くは脈絡膜メラノーマの 治療に用いられ、前向き・後ろ向き研究で5年局所制 御率 91.3~96.7% という良好な成績が報告されてい る178). 放射線抵抗性であるメラノーマに対しては、生 物学的効果の高い重粒子線治療の方が陽子線治療より も有効と理論的には考えられるが、重粒子線治療と陽 子線治療の両者とも施行可能な兵庫県立粒子線医療セ ンターからの報告では、 粘膜メラノーマに対する治療 成績は局所制御率、全生存期間、有害事象とも重粒子 線治療と陽子線治療の間に有意差はなかった¹⁷⁹. 鼻 腔・副鼻腔原発の T3~4N0M0 の粘膜メラノーマを対 象とした多施設共同第Ⅱ相試験で, 1年局所制御率 75.8%, 3年全生存率 46.1% の成績が報告されている 180). 本邦での陽子線治療の保険適用は小児がん、骨軟部腫 瘍, 前立腺癌, 頭頸部腫瘍 (口腔・咽喉頭の扁平上皮 癌を除く) に限られ、皮膚メラノーマは一般に適応外 である. 現在, 陽子線治療施設は国内に19カ所存在す る (2023年10月現在).

(3) BNCT

BNCT は、ホウ素原子核と中性子との原子核反応で 生じる α線を用いた放射線療法である. ホウ素を付加 したアミノ酸(ボロファラン(¹⁰B))を点滴投与して 腫瘍細胞に集積させた上で1回のみ中性子を照射する ことによって、飛程僅か 10 μm の重荷電粒子である α 線によって腫瘍細胞特異的に放射線照射が可能とな る. ボロファラン (¹⁰B) は, メラニンの生合成に必要 なチロシンと構造的に類似しており、メラノーマ細胞 がチロシンと間違えてボロファラン(1ºB)を細胞内に 取り込むと以前は考えられていた. しかし, ボロファ ラン (10B) は主に L-type amino-acid transporter 1 (LAT1)を介して細胞内に能動輸送されることが近年 明らかとなり、メラノーマに限らず多くの悪性腫瘍細 胞がLAT1を発現していることも示されている¹⁸¹⁾.本 邦からの報告では、局所進行 (T3~4N0M0) 皮膚メラ ノーマ患者 11 例に BNCT を行い, 9 例 (82.8%) には 経過観察中の再発を認めず、5年生存率は75%であっ た^{182, 183)}. BNCT の中性子源としてこれまでは研究用原 子炉が用いられてきたが、近年、病院に設置が可能な 加速器による中性子照射装置が開発されつつある。複 数の施設で BNCT の臨床試験が実施中もしくは計画 中であり、メラノーマに対する加速器による BNCT で 局所制御が得られた症例報告もある¹⁸⁴⁾. 今後の臨床 データ集積により、その効果が明らかになってゆくと 考えられる.

6.5 緩和的放射線療法

腫瘍による圧迫症状や出血などを軽減し、quality of life を改善することを目的として、あらゆる部位の病変に対して緩和的放射線療法が行われるが、まとまった報告がみられるのは、骨転移、脳転移病変が主になる。Kaz らはリンパ節病変に対する緩和照射にて、奏効率と奏効持続期間のいずれも、5 Gy/回以上による治療の方が5 Gy/回未満の場合よりも良好な結果であったと報告している¹⁸⁵⁾。Overgaard らも、転移・再発メラノーマ 618 例を対象に原発巣、リンパ節転移、臓器転移(脳および骨転移を除く)に対する放射線療法を行った結果を解析し、4 Gy/回以上の治療により4 Gy/回未満の場合よりも完全奏効率が高くなると報告している¹⁸⁶⁾。

(1)骨転移

骨転移に対する疼痛緩和を目的とした放射線療法に関しては、原発腫瘍を限定せずに行われた多数のランダム化比較試験およびメタアナリシスがあり、これらに基づいて 40~50 Gy/20 回、30~39 Gy/10~13 回、20~30 Gy/5 回、8 Gy/1 回など、様々な線量分割法が選択される^{33,187)}. これまでの複数の研究にて病理組織型による疼痛緩和効果の差はないとされているが、1回線量を高くするとその有効性が高まること、メラノーマが放射線抵抗性であることなどの特徴を考慮して、他臓器の骨転移に対する放射線療法よりもメラノーマではやや高めの線量が採用される場合が多い.

(2) 脳転移

1) 照射法とその適応

脳転移に対する放射線療法には、少数病変に主に用いられる定位放射線療法と、多発病変や播種病変に用いられる全脳照射がある。定位放射線療法は、脳転移病変の最大径3cm以下、病変数3~4個以下の症例に用いるのが一般的である。一方で、近年全脳照射後に神経認知機能が低下するとの報告が複数あり^{188,189}、病変数が多い症例に対しても定位放射線療法を適用する考え方が普及しつつある。また、以前は脳転移初発時の病変数が4~5個以上の症例に定位放射線療法を行っても予後不良と考えられていたが、日本ガンマナイフ研究会より、定位放射線療法を行うことで脳転移

5~10 病変の患者の予後は2~4個の患者と同等であることが報告された¹⁹⁰⁾. そのため,10 病変程度までの脳転移には定位放射線療法が行われる機会が増加している。

2) 脳転移への放射線療法と薬物療法併用の効果

メラノーマは他臓器原発のがんと比較して中枢神経 系への転移が直接死因となる頻度が高い1911. 緩和目的 での照射ではあるが脳転移巣の十分な局所制御が全生 存期間延長に寄与すると考えられることから、脳転移 が多発する場合でも定位放射線療法を行う機会が他臓 器がんの脳転移よりも多かった. そのため脳転移に対 する定位放射線療法の報告も多く, 全生存期間中央値 が5~8カ月192~199)と報告されている.一方で、近年で は薬物療法との併用による全生存期間の延長が報告さ れており、特に免疫チェックポイント阻害薬との併用 では、全生存期間中央値が1年を超える報告も多数見 られるようになっている200~202). また、メラノーマの脳 転移に対する定位放射線療法と免疫チェックポイント 阻害薬, 分子標的薬の併用効果に関する複数のメタア ナリシスでも一貫して. 併用により生存率や無増悪生 存率が改善し203~205),特に免疫チェックポイント阻害 薬、分子標的薬の施行前の放射線療法もしくは同時併 用でその効果が顕著であることが報告されている204).

放射線療法に免疫チェックポイント阻害薬を併用することによる有害事象の増加が懸念されるが、Shaらは多様な癌種、放射線療法部位の症例を集積したメタアナリシスを行い、grade 3/4の有害事象の増加は放射線療法との併用のタイミング・照射部位によらず、有意差を認めなかったと報告している²⁰⁶).

6.6 放射線療法の今後の展望

放射線療法による免疫賦活効果は古くから動物実験レベルで報告されていたが²⁰⁷⁾,2015年にDemariaらにより,抗CTLA4抗体と放射線療法の併用によりマウスの腫瘍増殖抑制効果だけでなく遠隔転移出現を抑制する効果が初めて示され,細胞性免疫と放射線療法効果との関連が明らかになった²⁰⁸⁾.実臨床では,このような放射線療法によるアブスコパル効果は古くから知られてはいたものの,極めてまれな現象と考えられていた²⁰⁹⁾.しかし,免疫チェックポイント阻害薬の出現以降,アブスコパル効果に関する報告²⁰⁹⁾が増加しており,その作用機序も広く研究されるようになってきている。多くの癌種でアブスコパル効果が報告されるようになっているが,免疫チェックポイント阻害薬のようになっているが,免疫チェックポイント阻害薬の

効果が最初に臨床的に示されたメラノーマで最も研究 がなされている. 最近の報告では, 抗CTLA4抗体 ipilimumab と放射線療法を併用して臨床的なアブス コパル効果を調べたシステマティックレビューでは、 アブスコパル反応率の中央値は26.5%だったと報告さ れている210). しかしながら放射線療法と併用する薬剤 の種類、治療順序、線量分割法などの条件は、これま での報告では一定しておらず、放射線療法による最も 効率的な抗腫瘍免疫賦活の条件も依然不明である. 明 確なコンセンサスは得られていないが、Traczらはシ ステマティックレビューを行い、がん治療においてア ブスコパル効果を利用するためには免疫チェックポイ ント阻害薬の投与前の放射線療法によるプライミング 効果が重要であると報告している2110. 今後も, 免疫 チェックポイント阻害薬と放射線療法を種々の条件で 併用した臨床試験のデータがさらに蓄積されることに より、より高率なアブスコパル反応が得られる治療法 の確立が期待される.

6.7 おわりに

今後、メラノーマに対して放射線療法を用いる主目的が「局所制御」から「免疫賦活」に移行し、放射線療法の意義と役割も変化してゆくかもしれない。そして免疫賦活により、放射線療法の本来の目的である「局所制御」効果が増強することで、今後放射線療法の意義もさらに増す可能性がある。

7. 周術期薬物療法

7.1 はじめに

メラノーマに対する術後補助療法は、かつて用いられたインターフェロン(interferon:IFN)から、抗PD-1 抗体をはじめとする免疫チェックポイント阻害薬(immune checkpoint inhibitor:ICI)や、BRAF/MEK 阻害薬をはじめとする分子標的薬へと発展した。さらに、近年ではICIを用いた術前補助療法や抗PD-1 抗体を含む併用療法としての周術期療法の開発も行われている。本章では、第 III 相ランダム化比較試験による検証結果が報告されたレジメンを中心に、メラノーマの周術期薬物療法について概説する。

7.2 Interferon

(1) Interferon- α

IFN は、メラノーマに対する再発予防目的の薬物療

法として、これまで最も頻繁に用いられてきた薬剤である。米国食品医薬品局(Food and Drug Administration:FDA)は 1996 年に高用量 IFN- α 、2011 年にポリエチレングリコールを結合させ半減期を長くした pegylated IFN- α を承認した。本邦でも第 I 相試験212)を経て、2015 年に AJCC 第 7 版の病期 III を対象に pegylated IFN- α が承認された。

高用量 IFN- α の承認の根拠となったのは、1996 年に報告された米国 Eastern Cooperative Oncology Group (ECOG) の E1684 であり、経過観察に対する高用量 IFN- α の全生存期間(overall survival:OS)の優越性が示された $^{213)}$ (表 12). しかし、同様に高用量 IFN- α が 用いられた E1684/E1690/E1694/E2696 の 4 試験を統合した解析では、OS の優越性は否定されている $^{214)}$.

Pegylated IFN- α の承認の根拠となった臨床試験 (EORTC (European Organization for Research and Treatment of Cancer) 18991) では、pegylated IFN- α が経過観察に比べ無再発生存期間(relapse/recurrence-free survival: RFS)を有意に延長したが、OS に有意差はみられなかった 215,216 (表 12). EORTC における IFN- α を用いた臨床試験のメタアナリシスでは、原発巣に潰瘍を有する症例や、病期 IIB~III(N1)の症例において IFN- α の効果が高い傾向がみられた 216 . これより、原発巣に潰瘍を有するセンチネルリンパ節 転移陰性例を対象に、pegylated IFN- α 投与群と経過観察群にランダム化する EORTC18081 が行われたが、患者登録ペースが遅く早期終了したこともあり予定した検出力が保てず、有意な RFS や OS の延長はみられなかった 217 .

このように、IFN- α では、第 III 相試験の多くで RFS や無病生存期間(disease-free survival:DFS)の延長が示された一方で、OS については一貫した延長効果を示すことができなかった.一方、高用量 IFN- α による有害事象として、疲労・倦怠感(96%)のほか、発熱(81%)、筋肉痛(75%)、悪心・嘔吐(66%)などのインフルエンザ様症状、肝機能障害(63%)、うつ病(40%)、好中球減少症などの骨髄抑制(92%)、などが高率に発生する 218)。また、grade 3 以上の重篤な有害事象も、EORTC18991では pegylated IFN- α の 45 % 215 ,E1684では高用量 IFN- α の 77 % に認められた 213)。毒性による治療延期・減量も pegylated IFN- α の 31 %、高用量 IFN- α の 28 ~52% で要している.以上より、これらの薬剤は高い毒性に見合う効果が得られるとは言い難く、広く普及しなかった.

対象) ; ;	ノケート円	治療 関連	治療関連有害事象	
E1684 7.2 第Ⅲ相RCT 非盲検 EORTC188	試験	対象	コホート	Z	RFS	SO	Grade 3/4	Grade 5 (死亡)	文献
	4 RCT	病期 II,II (AJCC 版数記載なし) 皮膚原発	FN-α2b : 20MU/m2 静注 週5日 4W, 以後 10MU/m2 皮下注 週3日 48W 経過観察	143	0.67 95%CI : 0.50 ~ 0.88 P=0.0013	0.73 95%Cl:0.54 ~ 0.99 P=0.015	76% NA	1.4% (2例) NA	213, 214
	EORTC18991 第亚相 RCT 非盲検	病期 II (AJCC6 版) 皮膚原発	_	627	0.82 95%Cl : 0.71 ~ 0.96 P=0.01	0.98 95%CI : 0.82 ~ 1.16 P=0.78	45% 12%	%0	215, 216
BRIM-8 7.3 第Ⅲ相RCT 二重盲検	8 BCT 本	病期 II C,III (AJCC7 版) SLN 転移 1mm 超 BRAF V600+ 皮膚原発	Vemurafenib:1,920mg/日分2内服 1年プラセボ	250	0.54 (IC~IB) 95%CI: 0.37~0.78 P=0.0010 0.80 (IIC) 95%CI: 0.54~1.18 P=0.026	NA	57%	%0	228
COMBI-AD 7.3 第Ⅲ相 RCT 二重盲検	3I-AD RCT 検	病期 II (AJCC7 版) SLN 転移 1mm 超 BRAF V600E/K+ 皮膚原発	Dabrafenib:300mg/日分2内服+ Trametinib:2mg/日分1内服1年 プラセボ	438	0.47 95%CI : 0.39 ~ 0.58 P<0.001	0.57(中間解析) 95%CI:0.42~0.79 P=0.0006	41%	%0	229 ~ 233
7.4 第Ⅲ相RCT 二重盲検	EORTC18071 第亚相 RCT 二重盲検	病期 II SLN 転移 1mm 超 皮膚原発	pilimumab:10mg/kg 静注 Q3W 4コース, 以後 Q12W 3年 プラセボ	475	0.75 95%Cl : 0.64 ~ 0.90 P=0.0013	0.72 95%CI: 0.58 ~ 0.88 P=0.001	54%	1.1%(5例)	234 ~ 236
E1609 7.4 第Ⅲ相RCT 非盲検	9 RCT	病期 皿BC,IV (AJCC7 版) 皮膚原発	 (A) Ipilimumab: 3mg/kg 静注 Q3W4 コース,以後 Q12W4 コース (B) IFN-α2b: 20MU/m2 静注 週5日 4W,以後 10MU/m2 皮下注 週3日 48W (C) Ipilimumab: 10mg/kg 静注 Q3W4 コース,以後 Q12W4 コース 	523 636 511	A vs. B: 0.85 99.4%Cl: 0.66 ~ 1.09 P=0.065 C vs. B: 0.84 99.4%Cl: 0.65 ~ 1.09 P 值記載左し	A vs. B: 0.78 95.6%CI: 0.61 ~ 0.99 P=0.044 C vs. B: 0.88 95.6%CI: 0.69 ~ 1.12 P 値記載なし	38% 79% 57%	0.6% (3例) 0.3% (2例) 1.6% (8例)	237
CheckMate 7.4 第皿相 RCT 二重盲検	CheckMate238 第亚相 RCT 二重盲検	病期 皿BC,IV (AJCC7 版) 皮膚,粘膜原発	Nivolumab:3mg/kg 静注 Q2W 1 年 Ipilimumab:10mg/kg 静注 Q3W 4コース, 以後 Q 12W 1 年	453	0.65 97.56%CI: 0.51 ~ 0.83 P<0.001	NA	14%	0% 0.4% (2例)	238,
EORTC136 KEYNOTE- 7.4 第Ⅲ相 RCT 二重盲検	EORTC1325/ KEYNOTE-054 第Ⅲ相 RCT 二重盲検	病期 II (AJCC7 版) SLN 転移 1mm 超 皮膚原発	Pembrolizumab:200mg/body 静注 Q3W18コース プラセボ	505	0.57 98.4%Cl: 0.43 ~ 0.74 P<0.001	∀ Z	15%	0.2% (1例) 0%	245

※ 12		メラノーマに対する周術期治療の第皿相試験(続き)	試験(続き)						
					ハザード比	- 元十	治療関連	治療関連有害事象	
記載項	試験	以影響	コホート	Z	RFS	SO	Grade 3/4	Grade 5 (死亡)	文献
			Pembrolizumab:200mg/body 静注 Q3W18 コース	647			%02	0.3%	
4.7	S1404 第正相 RCT 非盲検	病期山,IV (AJCC7 版) IIAは N2a以上 皮膚,粘膜原発	IFN-α2b:20MU/m2 静注 週5日 4W, 以後 10MU/m2 皮下注 週3日 44W または pilimumab:10mg/kg 静注 Q3W 4 コース, 以後 Q12W 11 コースまで	654	0.77 99.62%CI: 0.59 ~ 0.99 P=0.002	0.82 96.3%CI: 0.61 ~ 1.09 P=0.15	72% (IFN) 49% (IPI)	0% (IFN) 0.5% (2例)	246
4.7	CheckMate915 第11相 RCT	病期 IIBC, IV (AJCC8版)	Nivolumab:240mg/body 静注 Q2W 1 年 と同時併用で Initias made:1 made:4 pow 1 在	920	0.92 95%CI:0.77 ~ 1.09	1.03 95%CI: 0.80 ~ 1.32	33%	0.4% (4例)	250
	二重盲検	皮膚,粘膜原発		924	P=0.269	P 値記載なし	21%	%0	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KEYNOTE-716 等面相 BCT	病期 IIBC	Pembrolizumab:200mg/body 静注 Q3W18 コース	487	0.61 95%CI:075~082	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16%	%0	247 ~
ţ.	二重盲検	皮膚原発	プラセボ	489	00,001:0:10 P値記載なし		4%	%0	249
7.4	CheckMate76K 第正相 RCT	病期 IIBC (AJCC8版)	Nivolumab:480mg/body 静注 Q4W 1 年	526	0.42 95%Cl : 0.30 ~ 0.59	∀ Z	10%	0.2%	240
	二重盲検	皮膚原発	プラセボ	264	P<0.0001		2.3%	%0	
7.5	NADINA 第正相 RCT 非盲検	臨床的領域リンパ節転移を有する病期皿 (AJCC8 版) 皮膚原発、原発不明	Nivolumab: 240mg/body と lpilimumab: 80mg/body Q3W で術前 2 コース 領域リンパ節野清を実施し、病理学的奏効に応じて術後補助療法を変更 MPR あり: 術後補助療法は省略 MPR なし(BRAF野生型): nivolumab: 480mg/body Q4W 11 コース MPRなし(BRAF変異型): Dabrafenib: 300mg/日分2 内服+Trametinib: 2mg/日分2 内服+Trametinib: 2mg/日分1 内服 46W	ସ ସ	EFS: 0.32 99.9%CI: 0.15 ~ 0.66 <i>P</i> <0.0001 RFS: NA	۸N	39%	%0	256
			Nivolumab:480mg/body 静注 Q4W 12 コース	211			24%	0.5%	
a F	NIS - leist bellastada bezimabaez TOB		monthing I would interfer a MILL million half and million half. W words - OOM week - OOM words - OOM	+idi-	/WOO . W/OOM /W.		700,11, 01		

RCT, randomized controlled trial: SLN, sentinel lymph node: IFN, interferon: MU: million unit: W, weeks: Q3W, every 3 weeks: Q12W, every 12 weeks: Q2W, every 2 weeks: Q6W, every 6 weeks: Q4W, every 4 weeks: MPR, major pathologic response: N, number of patients: RFS, recurrence-free survival: EFS, event-free survival: OS, overall survival; CI, confidence interval; NA, not available; IPI, ipilimumab

(2) Interferon-β

本邦でのみ用いられてきた IFN-β を含むレジメンに は、dacarbazine (DTIC)/nimustine (ACNU)/vincristine (VCR) の3剤併用療法(術後補助療法の保険適 用なし) にIFN-βの術創部への局注を加える DAVFeron 療法と、IFN-βの術創部への局注のみを行 う IFN-β 療法がある. DAVFeron 療法には, ランダム 化比較試験は存在せず、3編の後ろ向き研究の報告が ある. 1996年に報告されたメラノーマ 427 例の後ろ向 き研究では、tumor thickness が 4 mm を超える、も しくは領域リンパ節転移を有する対象において、DAV 療法群の5年生存率46.2%に対してDAVFeron療法群 が65.1%と上回っていたと報告された(log rank test P = 0.14, life table analysis P < 0.05)²¹⁹. LbL, 2012 年に報告されたメラノーマ全国追跡調査グループによ る 831 例の後ろ向き研究では,DAVFeron 療法の無治 療経過観察に対する有意な死亡リスクの減少は、病期 II (HR 0.84, 95% CI 0.33~20.57, P=0.70) と病期 III (HR 0.87, 95% CI 0.54~1.39, P=0.57) のいずれにお いても示されなかった2200. さらに、2012年に報告され た後ろ向き研究でも、1998年から2009年に治療した メラノーマ 142 例 (病期 II:82 例, 病期 III:60 例) において、DAVFeron 投与群の非投与群に対する疾患 特異的生存期間の有意な延長は、病期 II (HR 1.09, 95% CI 0.17~6.82, P=0.93) と病期 III (HR 0.67, 95% CI 0.18~2.50, P=0.55) のいずれにおいても示されな かった²²¹⁾. 以上より、DAVFeron 療法による生命予後 改善のエビデンスは乏しく, さらには DTIC や ACNU などのアルキル化剤が原因と考えられる DAVFeron 療法後の治療関連白血病が複数例報告されていること から222,223)、今後も本レジメンを術後補助療法として用 いることは推奨されない.

単剤としての IFN- β 療法では、1983 年に病期 IV の皮膚転移例を対象にした天然型 IFN- β 局所注射の第 II 相試験の結果が報告され、20 例中 10 例(50.0%)、211 病巣中 159 病巣(75.4%)に奏効し、有望な局所効果を有することが示された 224 ・その後、本邦では数年前まで実地医療として IFN- β が術後補助療法として用いられてきた。メラノーマ全国追跡調査グループによる831 例の術後補助療法についての解析では、IFN- β 局所注射によって、病期 II(HR 0.49、95% CI 0.10~1.34、P=0.23)と病期 III(HR 0.65、95% CI 0.38~1.06、P=0.11)のいずれにおいても、IFN- β 非投与群に対する死亡リスク減少の傾向が示されたものの、統計学的

有意差はなかった2201. また,2012年に報告された後ろ 向き研究では、2004年から2009年に治療したメラノー マ46例(病期 II 31例, 病期 III 15例)において, 経 過観察群(25 例)に対し IFN-β 局所注射群(21 例)の OS が有意に延長した (OS 中央値: 56.3 カ月 vs 90.6 カ月,5年生存率:63.8% vs 94.1%, P=0.024)²²⁵⁾. さ らに、2017年に追加報告された後ろ向き研究では、 2004年から2015年に治療したメラノーマ63例(病期 II 34 例, 病期 III 29 例) において, 経過観察群 (27) 例) に対し IFN-β 局所注射群 (36 例) の OS が有意に 延長した (75カ月生存率: 41.2% vs 68.7%, P< 0.001)²²⁶. これらの後ろ向き研究では IFN-β が有効な 可能性がある結果を踏まえ、日本臨床腫瘍研究グルー プ (Japan Clinical Oncology Group: JCOG) 皮膚腫瘍 グループでは、皮膚メラノーマ病期 II および病期 III (AJCC 第7版) の根治手術後患者を対象とし, 経過観 察群と IFN-β 術後補助療法群の 2 群間の OS を比較し て IFN-β の優越性を検証する第 III 相ランダム化比較 試験(JCOG1309 (J-FERON)) を 2015 年から開始し, 現在患者登録を終了し追跡観察期間中である2270.

7.3 分子標的薬

(1) Vemurafenib (術後補助療法の保険適用なし)

BRAF 阻害薬 vemurafenib では、BRAF^{v600} 変異を 有する病期 IIC,病期 III (AJCC 第7版)を対象に、 vemurafenib とプラセボを比較する第 III 相ランダム 化比較試験 (BRIM-8) が行われた²²⁸⁾ (表 12). 病期 IIC・ IIIA・IIIB を対象としたコホート1では、vemurafenib 療法群が有意に DFS を延長したが (HR 0.54, 95% CI 0.37~0.78, P=0.001), 病期 IIIC を対象としたコホー ト2では、vemurafenib 群における有意な DFS の延長 は示されなかった (HR 0.80, 95%CI 0.54~1.18, P= 0.26). Grade3/4の有害事象は vemurafenib 群の 57% に生じ、主なものはケラトアカントーマ(10%)、関節 痛 (7%), 有棘細胞癌 (7%), 皮疹 (6%), ALT 上昇 (6%) であった. 主要評価項目である DFS の有意な延 長がコホート2では示されなかったため、vemurafenib の1年間投与は標準的な術後補助療法にはならなかっ た.

(2) Dabrafenib+trametinib 併用療法

BRAF 阻害薬 dabrafenib と MEK 阻害薬 trametinib では、AJCC 第7版による病期分類で BRAF^{v600}変異を 有する病期 IIIA(センチネルリンパ節転移巣の長径が 1 mm 超のみ)から病期 IIIC を対象に、dabrafenib +

trametinib 併用療法とプラセボを比較する第 III 相ランダム化比較試験(COMBI-AD)の結果が報告された229-233)(表 12). Dabrafenib + trametinib 併用療法群が有意に RFS を延長した(HR 0.47, 95%CI 0.39~0.58, P<0.001). OS は延長傾向が示されたが,統計学的に有意ではなかった(HR 0.80, 95%CI 0.62~1.01, P=0.06)233.Dabrafenib + trametinib 併用療法群で 10%以上の患者にみられた主な有害事象は,発熱(63%),疲労(47%),悪心(40%)であり,有棘細胞癌またはケラトアカントーマは 2%,投与中止に至った有害事象は 26%の患者にみられた.本併用療法は、2018年4月に FDA で BRAFV600E/K 変異を有し,領域リンバ節転移があるメラノーマ患者を対象に術後補助療法として承認され、本邦でも 2018年7月に術後補助療法としての追加承認を受けている.

7.4 免疫チェックポイント阻害薬

(1) Ipilimumab (術後補助療法の保険適用なし)

抗 CTLA-4 抗体 ipilimumab では、AJCC 第7版によ る病期分類で病期 IIIA (センチネルリンパ節転移巣の 長径が1 mm 超のみ) から病期 IIIC を対象に, ipilimumab (10 mg/kg) をプラセボと比較する第 III 相ラ ンダム化比較試験(EORTC18071)の結果が報告され た^{234~236)}(表 12). ipilimumab 群で RFS (HR 0.75, 95% CI $0.64 \sim 0.90$, P = 0.0013) \geq OS (HR 0.72, 95% CI 0.58~0.88, P=0.001) のいずれにおいても有意な延長 が示されたが、grade 3/4 の有害事象が 42% と多く、 有害事象による治療中止も52%,治療関連死(大腸炎 3例, 心筋炎1例, ギランバレー症候群1例) も 1.1% にみられた. また, 病期 IIIB から病期 IV (AJCC 第7 版) を対象に、ipilimumab (3 mg/kg または 10 mg/ kg)と高用量 IFN-α を比較する第 III 相ランダム化比 較試験(E1609)の結果も報告された²³⁷⁾(表 12). 高用 量 IFN-α と比較し、ipilimumab(3 mg/kg)では RFS 延長の傾向 (HR 0.85, 99.4% CI 0.66~1.09, P=0.065) と有意な OS の延長 (HR 0.78, 95.6% CI 0.61~0.99, P=0.044) がみられたが、ipilimumab 10 mg/kg では RFS (HR 0.84, 99.4% CI 0.65~1.09, P値記載なし) と OS (HR 0.88, 95.6% CI 0.69~1.12, P 値記載なし) のいずれも有意差はなかった. 有害事象による治療関 連死は, 高用量 IFN-α 群では 0.3% (2 例) にみられた 一方で, ipilimumab (3 mg/kg) 群では 0.6% (3 例), ipilimumab (10 mg/kg) 群では 1.6% (8 例) にみられ ている. ipilimumab (10 mg/kg) は, 2015年10月に 米国 FDA に承認されたものの、高い毒性や費用は懸念点とされ、後述の CheckMate 238 で nivolumab が ipilimumab に比べ有意な RFS の延長とともに良好な 有害事象プロファイルを示したことから、米国臨床腫瘍学会(American Society of Clinical Oncology: ASCO)のガイドラインでも推奨されていない⁷⁴⁾.

(2) Nivolumab (病期 IIB, IIC の保険適用なし)

抗PD-1 抗体 nivolumab では、病期 IIIB から病期 IV (AJCC 第 7 版)を対象に、nivolumab (3 mg/kg)をipilimumab (10 mg/kg)と比較する第 III 相ランダム化比較試験(CheckMate 238)の結果が報告された^{238, 239} (表 12). Nivolumab 群が有意に RFS を延長し (HR 0.65、97.56% CI 0.51~0.83、P<0.001)、grade 3/4の有害事象はipilimumab 群の45.9% に対しnivolumab 群では 14.4%と低く、有害事象による治療中止もipilimumab 群の42.6% に対しnivolumab 群では 9.7%と低かった。Nivolumab は、2017年12月に FDA で領域リンパ節転移もしくは遠隔転移巣が完全切除されたメラノーマ患者を対象に術後補助療法として承認され、本邦でも2018年8月に術後補助療法としての追加承認を受けている。

メラノーマでは、以前より領域リンパ節転移を有さ ない病期 II と領域リンパ節転移を有する病期 III の予 後が一部で逆転しており、センチネルリンパ節生検が 全例に行われることで、病期 Ⅱ に含まれていた潜在的 な領域リンパ節転移症例が正しく病期 III と診断され るようになり、予後の逆転現象は解消されることが期 待されていた。しかしながら、センチネルリンパ節生 検が行われる以前のデータを除いた AJCC 第8版にお いても、病期 IIB の予後が病期 IIIA を下回り、病期 IIC の予後が病期 IIIB とほぼ同等という状況は改善さ れなかった⁴⁵⁾. そのような病期 IIB~IIC(AJCC 第8 版) を対象に、nivolumab (480 mg/body) をプラセ ボと比較する第III相ランダム化比較試験(CheckMate 76K) の結果が報告された²⁴⁰⁾(表 12). Nivolumab 群が 有意に RFS を延長した (HR 0.42, 95% CI 0.30~0.59, P<0.0001). Nivolumab 群の grade 3以上の有害事象 は10%であり、急性腎障害および心不全による治療関 連死が1例にみられた. 本邦は本試験に参加していな いが、2023年10月にFDAで完全切除が得られた病期 IIB/C メラノーマを対象に術後補助療法として追加承 認されている.

(3) Pembrolizumab

抗 PD-1 抗体 pembrolizumab では、AJCC 第7版に

よる病期分類で病期 IIIA (センチネルリンパ節転移巣 の長径が1mm超のみ)から病期IIICを対象に、 pembrolizumab (200 mg/body) をプラセボと比較す る第 III 相ランダム化比較試験(EORTC1325/KEY-NOTE-054) の結果が報告された^{241~245)}(表 12). Pembrolizumab 群が有意に RFS を延長した(HR 0.57, 98.4% CI 0.43~0.74, P<0.001). Pembrolizumab 群の grade 3以上の有害事象は14.7%であり、筋炎による 治療関連死が1例にみられた. 本試験では、プラセボ 群に割り付けられて再発した場合、進行期治療として pembrolizumab を投与するデザインとなっている. 術 後補助療法として pembrolizumab を投与した場合の OSと無治療経過観察を行い再発した後に pembrolizumab を投与した場合の OS を比較し、術後補助療法 としての効果を評価できることからその最終解析結果 が待たれる. また、病期 IIIA (N2) から脳転移を有さ ない病期 IV を対象に、pembrolizumab (200 mg/body) を高用量 IFN-α または ipilimumab(10 mg/kg)と比 較する第 III 相ランダム化比較試験 (S1404) の結果も 報告された²⁴⁶⁾(表12). Pembrolizumab 群が有意に RFS を延長したが (HR 0.77, 99.62% CI 0.59~0.99, P= 0.002), OS に有意差はみられなかった (HR 0.82, 96.3% CI $0.61\sim1.09$, P=0.15). Pembrolizumab 群の grade 3以上の有害事象は20%であり、心筋炎による治療関 連死が1例にみられた.

さらに、病期 IIB、IIC(AJCC 第 8 版)を対象に、pembrolizumab(200 mg/body)をプラセボと比較する第 III 相ランダム化比較試験(KEYNOTE-716)の結果が報告された^{247~249}(表 12). pembrolizumab 群が有意に RFS を延長した(HR 0.61、(95% CI 0.45~0.82)、P 値記載なし). pembrolizumab 群の grade 3 以上の有害事象は 16% であり、治療関連死はみられなかった. 本邦では、pembrolizumab は 2018 年 12 月に病期 III、2022 年 9 月に病期 IIB、IIC を対象に術後補助療法としての追加承認を受けている.

(4) Nivolumab+ipilimumab 併用療法 (術後補助療 法の保険適用なし)

Nivolumab (240 mg/body, 2週間隔) + ipilimumab (1 mg/kg, 6週間隔) 併用療法を nivolumab (480 mg/body, 4週間隔) と比較する第 III 相ランダム化比較試験 (CheckMate 915) の結果が報告された²⁵⁰⁾ (表 12). 併用療法群は、RFS (HR 0.92, 95%CI 0.77~1.09, P=0.269) と OS (HR 1.03, 95%CI 0.80~1.32, P値記載なし) のいずれも有意な延長を示すことはできな

かった. 併用療法群の grade 3以上の有害事象は33%であり、治療関連死が0.4%(4例:呼吸切迫症候群1例,重症筋無力症2例,肺炎1例)にみられた. ipilimumab の上乗せ効果が示されなかった一因として、本試験で用いられた ipilimumab の用量が進行期メラノーマを対象とした3 mg/kgの3週間隔投与より少なかったことが挙げられている.

7.5 術前補助療法

術前補助療法は,一部の癌腫ではすでに臨床導入さ れており、メラノーマについては、特に ICI を用いた 場合に術後に用いるよりも幅広い腫瘍抗原に対する T 細胞活性が期待され251), さらに病理組織学的奏効が得 られた場合には術後再発が極めて稀であることから有 望視されてきた252~254). 実際に、根治手術可能な病期 IIIB~IV メラノーマを対象に, pembrolizumab を術前 3コース+術後15コース用いる試験治療を、術後のみ 18 コース用いる標準治療と比較する第Ⅱ相ランダム 化比較試験(S1801)が行われ、術前補助療法群で主 要評価項目である event-free survival を有意に延長し たことから (HR: 0.58, 95% CI 0.39~0.87, P= 0.004) 255), 術前補助療法の治療開発が加速している. しかしながら、現時点では欧米でも術前補助療法の承 認は得られていない. 現在, 臨床的な領域リンパ節転 移を有するメラノーマを対象に、複数の第 III 相ラン ダム化比較試験が行われている. Nivolumab (240 mg/ body) と ipilimumab (80 mg/body) の併用療法を 3 週間隔で2コース術前に投与し領域リンパ節郭清を行 い、病理学的奏効によって術後の治療を変更する試験 治療群を、通常通り領域リンパ節郭清後に nivolumab (480 mg/body) を 4 週間隔で 12 コース実施する標準 治療群と比較する第 III 相ランダム化比較試験である NADINAでは、試験治療群で有意に event-free survival が延長した (HR 0.32, 99.9% CI 0.15~0.66, P< 0.0001) 256. 本邦でも臨床的な領域リンパ節転移を有す るメラノーマを対象とした術前補助療法の開発が望ま れる.

7.6 周術期薬物療法の課題

(1) 全生存期間の延長

Nivolumab, pembrolizumab, dabrafenib+trametinib併用療法を用いた術後補助療法は、すでに標準治療として定着し、米国や欧州、本邦の診療ガイドラインでも推奨されている^{4,32,74,257,258)}. しかしながら、

いずれの薬剤も OS に関する情報はいまだに不足して いる. CheckMate 238で nivolumab と ipilimumab の OS の生存曲線はほぼ重なっており (HR 0.87, 95% CI 0.66~1.14), それ以前に行われた ipilimumab とプラセ ボを比較した EORTC18071 試験において ipilimumab がプラセボより有意に OS を延長させたことから (HR 0.72, 95% CI 0.58~0.88), 間接的に nivolumab の OS 延長効果が示唆されているに過ぎない234~236). EORTC18071 が実施された頃より再発後の薬物療法 は進歩しており、現在でも同様の結果になるかどうか は不明である. 実際に、スウェーデンで行われたレジ ストリ研究では、新規術後補助療法導入前の2018年6 月以前と導入後の2018年7月以降の病期 III のメラ ノーマの OS に有意差が見られなかったと報告されて いる259. 術後補助療法の承認の根拠となった臨床試験 の主要評価項目はいずれもRFSだったとはいえ,今後 OSの結果が報告され、万が一プラセボと有意差がな かった場合、引き続き標準治療としてこれらの術後補 助療法を行うかどうか議論になるであろう. 永続的, または稀ではあるが致死的な免疫関連有害事象のリス クや、高額な医療費なども勘案した上で、RFS だけの 延長がそれらに見合う利益かどうかが改めて論点にな り、術後補助療法で恩恵を受けられる患者を同定する バイオマーカーにも注目が集まると考えられる.

(2) BRAF^{V600} 変異を有する場合の薬剤選択

BRAF^{voo}変異が認められた場合、病期 III については nivolumab または pembrolizumab の抗 PD-1 抗体と dabrafenib + trametinib 併用療法の両者を用いることができる。Pembrolizumab を用いた KEYNOTE-054と dabrafenib + trametinib 併用療法を用いた COMBI-AD は対象病期や対照群がプラセボである点が共通しており、両者の RFS は近接していることから、現時点では有害事象の違いや点滴か内服かといった投与経路の違いをもとに、個々の患者ごとに選択しているのが実状である。後ろ向き研究も報告されているが^{260,2611}、抗 PD-1 抗体は術後補助療法やの再発が多く、BRAF/MEK 阻害薬は術後補助療法終了後の再発が多い傾向があることから²⁶²²、観察期間が短い場合の結果の解釈は慎重に行う必要がある。両者を直接比較したランダム化比較試験の実施が望まれる。

(3) 末端型および粘膜型メラノーマ

末端型/粘膜型メラノーマは、非末端型皮膚メラノーマと比較して、BRAF遺伝子変異の頻度が低く、tumor mutational burden (TMB) が低いのが特徴である²⁶³⁾.

そのため、治療の選択肢はほぼ ICI に限られるが、その奏効率は非末端型皮膚メラノーマよりも低い、実際に、中国で行われた粘膜型メラノーマを対象とした第 II 相ランダム化比較試験では、抗 PD-1 抗体 toripalimab と高用量 IFN- α が比較され、RFS に有意差を認めなかった(HR 1.053、95% CI $0.690\sim1.607$) 264 . したがって、白人の非末端型皮膚メラノーマのエビデンスをアジア人の末端型/粘膜型メラノーマに適用できない可能性があり、アジアからのエビデンスの創出が望まれる.

(4) 併用療法

進行期メラノーマと同様に、周術期においても抗 PD-1 抗体との併用療法の開発が行われている. 術後補 助療法では現在、病期 III~IV のメラノーマを対象に、 抗 LAG-3 抗体と nivolumab の固定用量配合剤である relatlimab-nivolumab を nivolumab と比較する第 III 相 ランダム化比較試験(RELATIVITY-098, NCT 05002569) が進行中である. また. 病期 IIB~IV のメ ラノーマを対象に、抗 TIGIT 抗体 vibostolimab と pembrolizumab の固定用量配合剤を pembrolizumab と比較する第III相ランダム化比較試験(KEY-VIBE-010, NCT05665595) も行われていたが、事前に 規定された無益性の基準に達したことから早期中止と なった. さらに、病期 IIIB~IV のメラノーマを対象 に、個別化 mRNA ワクチンと pembrolizumab の併用 を pembrolizumab と比較する第Ⅱ相試験 (KEY-NOTE-942, NCT03897881) では個別化 mRNA ワク チン併用群で有意に RFS を延長した. そのため、現在 同病期のメラノーマを対象とした同薬剤のランダム化 第 III 相 試 験 (INTerpath-001/V940-001, NCT 05933577) も開始されている. その他、BRAF^{V600E/K}変 異を有する術後病期 IIB~IIC(AJCC 第8版)のメラ ノーマを対象に, encorafenib + binimetinib をプラセボ と比較する第III相ランダム化比較試験(COLUMBUS-AD, NCT05270044) も行われていたが、登録不良に より早期中止している.

(5) バイオマーカー

術後補助療法の難点として、術後病期以外に患者個々の再発リスクを評価する手段がないことや、評価病変がないため実施中に有効かどうかの判断ができないことなどが挙げられる。再発リスクを予測する gene expression profiling 検査や血中循環腫瘍 DNA の解析による微小残存病変(Minimal/Molecular Residual Disease:MRD)検査²⁶⁵等の臨床導入が期待される。

7.7 おわりに

メラノーマは、アジア人では希少がんである一方で、 白人では一般的ながんであることから、これまで白人 を対象とした臨床試験をもとに治療体系が確立されて きた.しかしながら、ICIが広く用いられるようになっ た結果、同じメラノーマでも分子生物学的な背景や腫 瘍免疫環境が異なり、必ずしも白人に最善の治療戦略 がアジア人にも最善とは限らない可能性も示唆されて いる.今後は、白人のメラノーマの治療戦略が適用で きない部分については、アジア人のメラノーマの特性 を考慮したエビデンスを構築する必要がある.

8. 進行期治療: 殺細胞性抗がん剤と分子標的 薬. 有害事象, 脳転移治療などを含めて

8.1 進行期メラノーマに用いられる薬物療法

分子標的薬や免疫チェックポイント阻害薬 (immune checkpoint inhibitor: ICI) が本邦で使用可 能となった2014年以前は、進行期メラノーマに対する 標準治療は dacarbazine (DTIC) であったが、その効 果は限定的であった^{266, 267)}. DTIC は, 分子標的薬や ICI の開発に際し比較対照として用いられ、奏効率 (objective response rate: ORR), 無增悪生存期間 (progression-free survival: PFS), 全生存期間(overall survival: OS) のいずれにおいても分子標的薬や ICI が有意に優れていた266,268). よって今日では、進行期メ ラノーマに対する治療の第一選択には分子標的薬や ICI が推奨されている. しかしながら、実際に薬物療 法を選択する際にはエビデンスが同等の複数の選択肢 が存在し、また二次治療以降についてはランダム化比 較試験のデータが限られている. したがって薬物療法 は、有効性と安全性のデータを含む最新の臨床研究結 果に基づいて、患者と病状を踏まえて個別に決定され うる. 本章では、進行期メラノーマの治療に用いられ る殺細胞性抗がん剤と分子標的薬について、本邦で本 ガイドライン発行時において使用可能な薬剤を中心に 解説する. なお, 分子標的療法として本邦で承認され ている薬剤は、BRAF遺伝子変異を標的にしたものに 限られている.

8.2 殺細胞性抗がん剤

これまで主に用いられてきた殺細胞性抗がん剤の有

効性を以下に簡略に示す.

(1) 単剤療法

1) DTIC 単剤療法

根治切除不能メラノーマに対し、 $800\sim1,000 \text{ mg/m}^2$ 、3週間隔で用いられており、過去の報告では ORR $6.8\sim13.9\%$ 、PFS 中央値は $1.6\sim2.7$ カ月、OS 中央値は $5.6\sim9.7$ カ月であった^{267, 269, 270)} (表 13).

2) Fotemustine 単剤療法 (保険適用なし)

進行期メラノーマにおける DTIC を対照としたランダム化比較試験において、ORR で優れており(15.2% vs 6.8%、P=0.043)、OS 中央値は fotemustine でやや延長する傾向にあった(7.3カ月 vs 5.6カ月、P=0.067)²⁶⁹(表 13).

(2) 併用療法

単剤療法に加えてこれまで多くの進行期メラノーマに対する殺細胞性抗がん剤併用療法のレジメンが試みられてきたが、いずれも DTIC 単剤療法の効果を著しく上回る成績は得られていない。以下に代表的なレジメンを示す。

1) DTIC+tamoxifen (TAM) 併用療法 (TAM は保 険適用なし)

DTIC+TAM 併用療法は 1992 年にランダム化比較 試験が報告されており、DTIC単剤療法に比べて ORR、OS が上昇すると報告された(ORR: 28% vs 12%、P=0.03. OS 中央値: 11.2 カ月 vs 6.8 カ月、P=0.02) 267 . しかし後述する TAM を含む 4剤併用療法と DTIC 単剤療法との有効性の比較では有意差はみられず、TAM の DTIC への上乗せ効果については十分な検証がなされていない.

2) DTIC+carmustine (BCNU) +cisplatin (CDDP)+TAM 併用療法 (DBDT regimen,

Dartmouth regimen) (DTIC 以外保険適用なし)

1984年にDTIC+BCNU+CDDP+TAMの4剤併用療法の効果が報告され、ORR55%、完全奏効(complete response: CR)20%と良好な奏効を示した²⁷¹⁾. しかし、2001年に報告された本併用療法とDTIC単剤療法を比較した第II相ランダム化比較試験の結果では、ORR26%と、1984年に報告された高いORRは得られなかった。また、PFS、OSともに、DTICより延長傾向であったが統計学的有意差はなかった(PFS中央値4カ月 vs 2カ月、OS中央値9カ月 vs 7カ月)²⁷²⁾. さらに第III相ランダム化比較試験でも併用療法のORRは18.5%、OS中央値は7カ月に留まり、DTIC単剤療法と比較してORR、OSともに統計学的有意差は

表 13 殺細胞性抗がん剤レジメンおよび分子標的療法の過去の報告における臨床効果(メラノーマ診療ガイドライン第3版から引用)

レジメン	奏効率 (%)	全生存期間 中央値(月)	無増悪 生存期間 中央値(月)	3年 生存率 (%)	3年 無増悪 生存率 (%)	文献
DTIC 単剤	6.8 ~ 13.9	5.6 ~ 9.7	1.6 ~ 2.7			267, 269, 270
						278, 279, 280
fotemustine 単剤	5 ~ 15.2	7.3	1.8			269
CP	16.4 ~ 18	8.6 ~ 11.3	4.2			275, 276
CP+bevacizumab	25.5	12.3				276
CP+sorafenib	20	11.1	4.9			275
DTIC+tamoxifen	28	12				267
Dartmouth	18.5					271
vemurafenib 単剤	48 ~ 52	13.6 ~ 17.4	6.9 ~ 7.2			278, 279, 284
dabrafenib 単剤	50 ~ 51	13.6	5.1	32	12	280, 414
encorafenib 単剤	41	23.5	7.3			416
dabrafenib+trametinib 併用	67 ~ 83			44	22	286, 414
vemurafenib+cobimetinib 併用		22.3	12.4			284
encorafenib+binimetinib 併用	64	33.6	19			285

DTIC: dacarbazine, CP: carboplatin+paclitaxel, Dartmouth: DTIC+BCNU (carmustine)+CDDP (cisplatin)+tamoxifen

なかった²⁷³⁾.

DTIC+nimustine (ACNU) + CDDP+TAM 併 用療法 (DAC-Tam 療法)

本邦においては、前述の DBDTregimen を参考に、BCNU を ACNU に変更した DAC-Tam 療法が考案され、1990 年代中盤から新規薬物療法の登場前の 2013 年頃まで、進行期治療として用いられていた。有効性については、2001 年に報告された本邦患者 21 例での後ろ向き研究で、ORR28.6% (CR0%+部分奏効 (partial response: PR) 28.6%)で、OS については報告されていない。PR 例はいずれも一次治療での使用であり、特に皮膚、リンパ節、肺転移巣に奏効した²⁷⁴.

4) Carboplatin (CBDCA)+paclitaxel (PTX) 併 用療法 (保険適用なし)

本併用療法と本併用療法に分子標的薬である sorafenib や bevacizumab の上乗せした 2 群の効果を 比較した臨床試験が報告されている 275,276). Sorafenib の 本併用療法への上乗せ効果を検討した第 III 相ランダム 化比 較試験では,CBDCA+PTX 併用療法群と CBDCA+PTX+sorafenib 併用療法群の 2 群間において ORR(18% vs 20%,P=0.427),PFS (PFS 中央値:4.2 カ月 vs 4.9 カ月,P=0.092),OS (OS 中央値:11.3 カ月 vs 11.1 カ月,P=0.86)のいずれも有意差はなかった 275). Bevacizumabへの上乗せ効果を検討した第 II 相ランダム化比較試験でも CBDCA+PTX 併用療法群

と CBDCA+PTX+ bevacizumab 併用療法の 2 群間において ORR(16.4% vs 25.5%,P=0.1577),PFS(PFS中央値:4.2カ月 vs 5.6 カ月,P=0.1414),OS(OS中央値:8.6 カ月 vs 12.3 カ月,P=0.366)といずれも有意差はなかった 276)。これらの併用療法いずれの成績からも,DTIC 単剤療法に明らかに優る効果は示されなかった.

一方で、進行期粘膜メラノーマを対象とした CBDCA+PTX+bevacizumab 併用療法 (一次治療) に関するランダム化比較第 II 相試験では、CBDCA+PTXと比較して bevacizumab の追加により PFS、OS ともに有意に延長した(PFS 中央値:3.0 カ月 vs 4.8 カ月、ハザード比(hazard ratio:HR)0.461、95% 信頼区間(confidence interval:CI)0.306~0.695、P<0.001、OS 中央値:9.0 カ月 vs 13.6 カ月、HR 0.611、95% CI 0.407~0.917、P<0.017)²⁷⁷.

8.3 BRAF^{V600E/K} 遺伝子変異を有する進行期メ ラノーマに対する分子標的薬

(1) BRAF 阻害薬単剤療法

1) Vemurafenib

病期 IIIC, IV (AJCC 第7版) で BRAF^{V600E/K} 遺伝子変異を有する未治療のメラノーマを対象に行われた vemurafenib (1,920 mg/日) と DTIC (1,000 mg/m², 3 週間隔) を比較した第 III 相ランダム化比較試験

(BRIM-3) では、ORR は vemurafenib 群で 48%、DTIC 群で 5% と、vemurafenib は有意に高い ORR を示した。初回奏効までの期間(time to response)の中央値も vemurafenib 群で 1.45 カ月、DTIC 群で 2.7 カ月と、投与後の奏効も速やかに得られる傾向であった²⁷⁸⁾. さらに、vemurafenib 群では DTIC 群と比較して PFS、OS ともに有意に延長した(PFS 中央値: 6.9 カ月 vs 1.6 カ月、HR 0.38、95% CI 0.32~0.46、P<0.0001、OS中央値: 13.6 カ月 vs 9.7 カ月、HR 0.70、95% CI 0.57~0.87、P=0.0008)²⁷⁹(表13)。しかしながら、vemurafenib 投与後の薬剤耐性による腫瘍の再増殖が顕著である課題が生じた.

2) Dabrafenib

病期 IIIC, IV (AJCC 第 7 版) で BRAF^{V600E/K} 遺伝子変異を有する未治療メラノーマを対象に行われたdabrafenib (300 mg/日) と DTIC (1,000 mg/m², 3 週間隔)を比較した第 III 相ランダム化比較試験で,ORR は dabrafenib 群で 50%, DTIC 群で 7% と優れた奏効を示し、PFS も有意に延長した (PFS 中央値:5.1 カ月 vs 2.7 カ月、HR 0.30、95% CI 0.18~0.51、P<0.0001)²⁸⁰⁾. 一方、OS は 2 年間以上の経過観察期間で両群間に統計学的有意差はなかった (表 13). これは、本試験がクロスオーバー比較試験であったためと考えられるが、vemurafenib と同様に、一次治療としてのBRAF 阻害薬単剤療法は OS の延長効果に乏しいことが示された.

(2) MEK 阻害薬単剤療法

進行期の BRAF^{V600E/K} 遺伝子変異陽性メラノーマ患者を対象に、trametinib と殺細胞性抗がん剤(DTIC または PTX)と比較した第 III 相ランダム化非盲検化多施設共同試験(METRIC)では、trametinib 群(2 mg/日)と殺細胞性抗がん剤(DTIC または PTX)群との比較で ORR(22% vs 8%,P=0.001),PFS(PFS中央値:4.8 カ月 vs 1.5 カ月,HR 0.45,95% CI 0.33~0.63,P<0.001),OS(6 カ月生存率:81% vs 67%,HR 0.54,95% CI 0.32~0.92,P=0.01)のいずれもtrametinib 群で優れており、細胞性抗がん剤に対する優越性が証明された²⁸¹⁾.ただし、本邦では、trametinib は dabrafenib との併用療法で薬事承認されている.

(3) BRAF/MEK 阻害薬併用療法

前述のBRAF 阻害薬単剤療法の早期薬剤耐性を克服すべく、MAPキナーゼ経路のBRAFと下流のMEKを同時に阻害するBRAF/MEK 阻害薬併用療法が考案され、一次治療における有効性をBRAF 阻害薬単剤

療法と比較した臨床試験が複数施行された.

1) Dabrafenib+trametinib 併用療法

第 III 相ランダム化比較試験(COMBI-d)で、本併用療法は dabrafenib に比べて ORR が高く(67% vs 51%)、3 年以上の観察期間で PFS、OS ともに有意に延長した(3 年無増悪生存率:22% vs 12%,HR 0.71、95% CI 0.57~0.88、3 年生存率:44% vs 32%,HR 0.75、95% CI 0.58~0.96)²⁸²(表 13). また本併用療法と vemurafenib の有効性を比較した第 III 相ランダム化比較試験(COMBI-v)と COMBI-d での dabrafenib + trametinib 併用療法群を併せた統合解析では、5 年無増悪生存率 19%(95%CI 15~22)、5 年生存率 34%(95%CI 30~38)であった²⁸³。

2) Vemurafenib+cobimetinib 併 用 療 法 (cobimetinib は保険適用なし)

Vemurafenib 単剤療法と比較した第 III 相ランダム 化比較試験(coBRIM)でも、PFS、OS ともに併用療 法群で有意な延長を認めた(PFS 中央値: 12.3 カ月 vs 7.2 カ月、HR 0.58、95% CI 0.46~0.72、P<0.0001. OS 中央値: 22.3 カ月 vs 17.4 カ月、HR 0.70、95% CI 0.55~ 0.90、P=0.005)²⁸⁴ (表 13).

3) Encorafenib+binimetinib 併用療法

BRAF^{V600E/K} 遺伝子変異を有する未治療もしくは免疫療法後の進行期メラノーマを対象に、encorafenib + binimetinib 併用療法、encorafenib 単剤療法、vemurafenib 単剤療法の3アームを比較した第 III 相ランダム化比較試験(COLUMBUS)においても、ORR は併用療法群で最も高い傾向にあった(64% vs 41% vs 52%). PFS、OS についても、併用療法群が vemurafenib 単剤療法群と比較して有意に延長していた(PFS 中央値:14.9カ月 vs 7.3カ月、HR 0.54、95% CI 0.41~0.71、P<0.0001. OS 中央値:33.6カ月 vs 16.9カ月、HR 0.61、95% CI 0.47~0.79、P<0.0001)²⁸⁵. 一方で、本併用療法と encorafenib 単剤療法群との比較では、OS は両群間に統計学的に明らかな有意性は認めなかった(OS 中央値:33.6カ月 vs 23.5カ月、HR 0.81、95% CI 0.61~1.06、P=0.12)(表 13).

(4) 安全性

1) Dabrafenib+trametinib 併用療法

COMBI-d における dabrafenib + trametinib 併用療法群と dabrafenib 単剤療法群における grade3/4 の有害事象発生率はそれぞれ 48%, 50% と同程度であった²⁸²⁾. 併用療法群で 10% 以上発生率が上昇する有害事象(全 grade) は、発熱 (59% vs 33%),下痢 (31%

vs 17%), 嘔吐 (26% vs 15%), 末梢浮腫 (22% vs 9%) などで, 特に発熱が顕著であった. 一方で, 併用療法群で発生率が減少する有害事象は, 過角化 (7% vs 35%), 脱毛 (9% vs 28%), 皮膚乳頭腫 (2% vs 22%), 掌蹠角化 (5% vs 18%), 有棘細胞癌/ケラトアカントーマの発生 (2% vs 7%) など, 皮膚症状が主であった.

2) Vemurafenib+cobimetinib併用療法 (保険適用なし)

CoBRIM における grade3/4 の有害事象発生率は vemurafenib + cobimetinib 併用療法群で 37%, vemurafenib 単剤療法群で 28% であった. 発熱 (全 grade) は併用療法群で 29%, vemurafenib 単剤療法では 24% であった. その他, 併用療法群で血中 γ-GTP 上昇 (15% vs 10%), 血中 CPK 上昇 (12% vs <1%), 血中 ALT 上昇 (11% vs 6%) の発生率が高い傾向であった²⁸⁴.

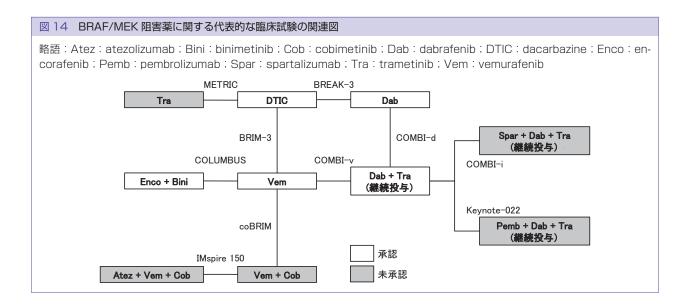
3) Encorafenib+binimetinib 併用療法

COLUMBUS における 5% 以上の患者にみられた grade3/4の有害事象は encorafenib + binimetinib 併用 療法群で γ-GTP 上昇 (9%), CPK 上昇 (7%), 高血圧 (6%) であったが、encorafenib 単剤療法群では手足症 候群(14%), 筋肉痛(10%), 関節痛(9%) であっ た²⁸⁵⁾. 発熱の頻度(全 grade) は encorafenib + binimetinib 併用療法群で 20%, encorafenib 単剤療法群で 16%, vemurafenib 単剤療法群で28%であった. 脱毛 や過角化は併用療法群において encorafenib 単剤療法 群よりも発生率が低い傾向であった(過角化:16% vs 39%, 脱毛: 14% vs 56%). また, 併用療法群で特徴 的な有害事象として、霧視が18% (grade 1/2 16%, grade 3/4 2%) で, encorafenib 単剤療法群 (grade 1/2 4%) と比較して高頻度であった. したがって, encorafenib + binimetinib 併用療法実施の際には、 眼症 状について注意深く観察する必要がある.

(5) 本邦患者における有効性と安全性

本邦では、dabrafenib + trametinib 併用療法の第 I/II 相臨床試験が施行されており、12 例と少数例ではあるが、ORR は 83% であった²⁸⁶⁾。有害事象については、発熱(75%)、肝酵素上昇(67%)、末梢浮腫(50%)、鼻咽頭炎(50%)と報告されている²⁸⁶⁾。また、encorafenib + binimetinib 併用療法については、本邦患者が COLUMBUS²⁸⁵⁾に登録されているものの、本邦患者を対象としたサブグループ解析はされていない。近年、後ろ向き観察研究が複数(単施設:dabrafenib + trametinib 併用療法 50 例²⁸⁷⁾、多施設:dabrafenib + trametinib 併用療法 110 例、encorafenib + binimetinib

併用療法 2 例²⁸⁹⁾、多施設: dabrafenib + trametinib 併用療法 201 例、encorafenib + binimetinib 併用療法 35 例²⁸⁹⁾)報告されている。その中で、一次治療のデータが明記されている B-CHECK-RWD study²⁸⁹⁾では、BRAF/MEK 阻害薬併用療法の ORR 69.1%(95% CI 62.7~74.9)、PFS 中央値 14.7 カ月(95% CI 11.4~18.0)、OS 中央値 34.6 カ月(95% CI 25.1~44.2)であった。予後不良因子は、LDH 上昇、M stage(M1c/M1d、ECOG Performance Status(PS) 2~4 であったが、LDH 上昇以外は報告間により違いがある。


重篤な有害事象 (grade 3以上または要治療中止) 発生率は 35% (発熱 13.6%, AST/ALT 上昇 5.5%, CPK 上昇 6.4%, 悪心・嘔吐 6.4%) であった²⁸⁹. 発熱は, 他の報告でも全 grade でそれぞれ 52% (重篤例 4%)²⁸⁷, 58.8% (重篤例 20.9%)²⁸⁸と報告されている. また, これら観察研究では, 同一施設が複数の研究に参加しているため, 報告間で重複例が存在している可能性に留意する必要がある.

8.4 メラノーマ脳転移に対する治療

BRAF/MEK 阻害薬併用療法は、BRAFVOODEN 遺伝子変異を有する進行期メラノーマにおける標準治療を変えた.しかし、薬事承認に至った臨床試験のほとんどから、活動性の中枢神経系転移を有する患者は除外されていた.また、本ガイドライン発行時において、殺細胞性抗がん剤、ICI などの他の薬物療法や局所療法とBRAF/MEK 阻害薬併用療法の脳転移に対する効果を比較したランダム化比較試験は存在しない.実際には、薬物療法と局所療法との併用を、個々の患者の脳転移の状態(部位、個数、大きさ)と症状(症候性、無症候性)を踏まえて、個別に選択する必要がある.ここでは脳転移に対する全身薬物療法の効果を検証したデータをいくつか紹介する.

(1) 殺細胞性抗がん剤

殺細胞性抗がん剤の単独使用では、中枢神経系に病変を有するメラノーマの OS を延長することはなかった290-292). その理由として、脳転移例では、身体活動性が低下していることや、血液脳関門により薬物浸透が困難なため脳内移行が妨げられている可能性が想定されている²⁹³⁾. しかしながら一方で、脳内及び脳脊髄液中への移行性の良い経口薬である temozolomide とlomustine の併用療法の安全性と有効性を探索した試験でも、病勢コントロールが得られず、全生存期間中央値は2カ月であった²⁹⁴⁾.

(2) 分子標的療法

原発巣と脳転移巣の組織サンプルにおける BRAF 遺伝子変異の一致率は 80% と高率な一致が報告されている²⁹⁵⁾. BRAF^{V600} 遺伝子変異を有するメラノーマの脳転移に対する多施設非盲検化第II相複数コホート試験 (COMBI-MB)²⁹⁶⁾で dabrafenib + trametinib 併用療法の有効性が検討されている. 頭蓋内病変におけるORR は、コホート A (BRAF^{V600E} 遺伝子変異陽性、PS0~1、無症候性、局所療法歴なし)で 58%、コホート B (BRAF^{V600E} 遺伝子変異陽性、PS0~1、無症候性、局所療法歴あり)で 56%、コホート C (BRAF^{V600E} 遺伝子変異陽性、PS0~1、無症候性、局所療法歴の有無を問わず)で 44%、コホート D (BRAF^{V600E}/D/K/R 遺伝子変異陽性、PS0~2、症候性、局所療法歴の有無を問わず)で 59% と報告されている.

8.5 課題

BRAF^{V600E/K} 遺伝子変異陽性進行期メラノーマには、 分子標的薬および ICI のいずれを一次治療として選択 すべきかが大きな臨床的な問いとして存在するが、そ れについては総論 10 (免疫チェックポイント阻害薬と 分子標的薬の併用療法および逐次投与) を参照された い.

近年,海外では分子標的療法+ICIの併用療法や,下記に概説する新規分子標的療法の臨床試験が実施されている.今後,これらの薬剤が標準治療となった場合には,例えば,cobimetinibのような本邦未承認の薬剤を使用したレジメンは本邦では使用できないため

に、本邦と世界との標準治療の間に乖離が生じる可能 性がある.

(1) BRAF^{VGODE/K} 遺伝子変異を有する進行期メラノーマに対する分子標的療法と免疫チェックポイント阻害薬の併用療法

近年, 前臨床試験で、BRAF 遺伝子変異を有するメ ラノーマにおいて、BRAF/MEK 阻害薬併用療法にICI を併用することにより、抗腫瘍活性が改善することが 報告され297~301)実際に海外での臨床試験において, 本邦 での保険適用がない3剤併用療法の有効性が検討され ている^{311~314)}(図14). 3つの臨床試験において、BRAF/ MEK 阻害薬に抗 PD-1/PD-L1 抗体 (atezolizumab (保 険適用なし), spartalizumab (保険適用なし), pembrolizumab) を追加する3剤併用療法により、主要評 価項目である PFS は延長したが、統計学的有意差が示 されたのは IMspire150 でのみであった. 一方で、3つ の試験の追跡期間が延長された最近のデータをメタア ナリシスした結果では、PFSとOSにおける3剤併用 療法の優位性を示しており、いずれの試験でも同様の 傾向が見出されたことから、抗 PD-1/PD-L1 抗体によ る持続的な抗腫瘍免疫応答の関与が示唆されてい る^{301,302)}. しかしながら, 3つの試験では比較対照群に ICI が無いことにより、3剤併用療法の ICI に対する PFS, OSへの上乗せ効果の評価はできない. 安全性に ついては、いずれの試験でも3剤併用により特にgrade 3以上の有害事象発生率が増加した. 3剤併用群につい ては、今後の臨床試験での薬剤投与量最適化の検討を 要する (図14).

1) Atezolizumab+vemurafenib+cobimetinib²⁹⁸⁾ (保険適用なし)

上記3剤併用群と対照群 (vemurafenib+cobimetinib) を比較した第III相ランダム化比較試験 (IMspire150)では, 観察期間中央値18.9カ月でのORR は同程度であった (66.3% vs 65%). 研究者判定による PFS は, 3剤併用群は対照群より有意に延長したが (PFS 中央値:15.1カ月 vs 10.6カ月, HR 0.78, P= 0.025), 独立中央判定では有意差なしと判定された (P=0.16). また, 研究者判定による奏効持続期間中央値:21カ月 vs 12.6カ月). 有害事象については, 重篤な有害事象発生率 (79% vs 73%) および治療中止に至った割合 (13% vs 16%) は同程度であった.

2) Spartalizumab+dabrafenib+trametinib²⁹⁹⁾ (保険適用なし)

上記 3 剤併用群と対照群 (dabrafenib + trametinib) を比較した第 III 相ランダム化比較試験 (COMBI-i) では、観察期間中央値 27.2 カ月での ORR は 69% と 64%であり、研究者判定による PFS 値は、3 剤併用群と対照群で統計学的有意差はなかった(PFS 中央値: 16.2カ月 vs 12.0カ月 HR 0.82、95% CI 0.66~1.03、P=0.042;片側検定).一方で、有害事象については、重篤な有害事象率 (55% vs 33%)、薬剤減量を要した割合 (68% vs 45%)、治療中止に至った割合 (12% vs 8%)と3 剤併用群で高い傾向にあった.

3) Pembrolizumab+dabrafenib+trametinib^{300,303,304)}(保険適用なし)

上記3剤併用群と対照群(dabrafenib+trametinib) を比較した第II相ランダム化比較試験 (KEY-NOTE-022)では、PFSのHR 0.62以下でpositive study となるように試験が組まれた結果, 観察期間中央値9.6 カ月での PFS は3剤併用群で有意に延長したが negative study となった (PFS 中央値: 16.0 カ月 vs 10.3 カ 月, HR 0.66, P=0.043)³⁰⁰. 事後解析の報告では, ORR は3剤併用群で低かったが (63% vs 72%, 有意差検定 なし)³⁰³⁾, PFS, OS, 奏効持続期間は延長していた (PFS 中央値: 17.0 カ月 vs 9.9 カ月, HR 0.46, 95% CI 0.29~0.74, OS 中央値: 46.3 カ月 vs 26.3 カ月, HR 0.60, 95% CI 0.38~0.95, 奏効期間中央値: 30.2 カ月 vs 12.1 カ月, HR 0.32, 95% CI 0.17~0.59)³⁰⁴⁾. 一方 で、重篤な有害事象発生率は3剤併用群で高く(58% vs 25%), 薬剤減量を要した割合も同様に3剤併用群 で高かった (83% vs 68%)^{300,303)}.

(2) 他の分子標的療法

1) VEGF/VEGFR を標的とした血管新生阻害薬

血管内皮増殖因子 (VEGF) および受容体 (VEGFR) を標的とした薬剤は、CBDCA+PTX 療法の他にも、ICI との併用により進行期粘膜メラノーマへの上乗せ効果が期待されている。第 Ib 相臨床試験において、VEGFR 阻害薬 axitinib (保険適用なし) は抗 PD-1 抗体 toripalimab (保険適用なし) との併用で ORR48.3% (95% CI 29.4%~67.5%)、PFS 中央値 7.5 カ月 (95% CI 3.7~NR) が報告されている³⁰⁵⁾. 重篤な有害事象は39.4%でみられ、高血圧は9.1%であった。また、抗VEGF 抗体 bevacizumab (保険適用なし) と抗 PD-L1 抗体 atezolizumab (保険適用なし) 併用療法の有効性を探索した第 II 相臨床試験では、ORR 45.0% (95% CI 29.3%~61.5%)、PFS 中央値 8.2 カ月 (95% CI 2.7~9.6)と報告されている³⁰⁶⁾.

2) KIT 阻害薬

レセプターチロシンキナーゼの一つである KIT proto-oncogene receptor tyrosine kinase (KIT) の変異を持つ進行期メラノーマに対して、チロシンキナーゼ阻害薬 imatinib (保険適用なし)を投与した第 II 相臨床試験では ORR 29%、PFS 中央値が 3.7 カ月であった 307 . 点突然変異と遺伝子増幅における ORR、PFS 中央値はそれぞれ 53.8%、3.9 カ月と 0%、3.4 カ月であった. L576P (エクソン 11) または K642E (エクソン 13) の変異陽性例での奏効率が高かった(52%、42%). 一方で、エクソン 17 に変異陽性例での奏効例はなかった.

また、別の第 II 相臨床試験において、点突然変異型への(i) dasatinib (保険適用なし) および(ii) nilotinib (保険適用なし) の ORR、PFS 中央値は、(i) 18.2%、2.1 カ月³⁰⁸⁾と(ii) 26.2%と 4.2 カ月³⁰⁹⁾ であった. 重篤な有害事象発生率は(i) 44%³⁰⁸⁾、(ii) 59.5%³⁰⁹⁾であった. Nilotinib については imatinib 投与後再発した患者群においても奏効例が観察された³¹⁰⁾.

3) NRAS 遺伝子変異陽性に対する MEK 阻害薬

BRAF 遺伝子変異とは排他的である Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) 遺伝子変異は、BRAF 阻害薬への耐性化の際に約 20% で獲得されている³¹¹⁾. NRAS 遺伝子変異例に対し、MAP キナーゼ経路の下流分子 MEK を標的として binimetinib (保険適用なし)の効果を検証した非盲検化ランダム化比較試験は、DTIC と比較して、ORR と PFS は有意に優れていた(ORR: 15% vs 7%、P=0.015、PFS 中

央値: 2.8 カ月 vs 1.5 カ月, HR 0.62, 95% CI $0.47\sim$ 0.80, P<0.001). 重篤な有害事象はそれぞれ 34%, 22% と報告されている 312%.

4) TRK 阻害薬

染色体転座による Neurotrophic tyrosine receptor kinase (NTRK) 融合遺伝子の形成は、メラノーマでは数%以下で生じる³¹³⁾. TRK 融合遺伝子陽性の進行期メラノーマ(7例)への larotrectinib³¹⁴⁾の ORR は43%(3/7)であった.

5) CDK4/6 阻害薬

Cyclin D1 (CCND1) と Cyclin dependent kinase (CDK4) は複合体を形成して Cell cycle を促進し、CDKN2A にコードされる抑制分子の一つ p16^{CDKN2A} はこれを抑制する。CCND1 と CDK4 の遺伝子増幅または CDKN2A の欠失がある末端型メラノーマに対する palbociclib (保険適用なし)の ORR は 6.7%、PFS 中央値は 2.2 カ月であった。一方で重篤な有害事象発生率は 46.7% であった³¹⁵⁾.

(3) 抗体-薬物複合体

抗体をデリバリーツールとして活性の強い分子標的薬を病変部位へと送達し、安全域を広げる抗体薬物複合体(antibody-drug conjugate:ADC)の臨床試験も海外では実施されている。1例として、BRAF/MEK阻害薬によりメラノーマ細胞上に発現がより上昇するとされるGlycoprotein-NMB³¹⁶⁾を標的としたADCであるglembatumumab vedotin(保険適用なし)はBRAF/MEK阻害薬耐性メラノーマに対し11~15%のORRを示した³¹⁷⁾.

8.6 おわりに

分子標的薬の承認により、BRAF遺伝子変異を有する進行期メラノーマ患者の生命予後は大きく改善した。BRAF/MEK 阻害薬併用療法を実施する際には、薬剤特有の有害事象に注意する必要がある。近年、海外では、ADCなどの新規標的治療開発に加え、後述の免疫療法の治療開発も多角的に進行しており、さらには免疫細胞や腫瘍細胞由来のバイオマーカーにより治療選択が層別化される可能性がある。したがって、今後は分子標的薬と免疫療法との組み合わせがより複雑化することが想定される。よって、薬物療法の有効性および安全性をよく理解し、患者と疾患の特徴を踏まえて治療を選択することがより重要となる。また、海外で実施される第 III 相臨床試験の結果により、本邦でも標準治療が増える可能性がある一方で、治療薬の

中に本邦では保険適用のない薬剤が含まれる場合に は、海外と本邦での標準治療に違いが生じる可能性も ある.

9. 進行期治療: 免疫チェックポイント阻害薬. 有害事象, 脳転移治療などを含めて

9.1 免疫チェックポイント阻害薬とは

メラノーマは免疫に認識されやすいがんであり、が ん免疫療法の研究開発はメラノーマを中心に進められ てきた. がん免疫の中心を担うのは CD8 陽性細胞傷害 性 T 細胞(Cytotoxic T Lymphocyte: CTL)および CD4 陽性ヘルパー T 細胞によるがん抗原に対する T 細胞反応である. そしてがんに対する強い T 細胞応答 が起こるのを抑制している様々な機構の一つが、T細 胞の共抑制分子を介した抑制機構である免疫チェック ポイントである. もともと生体内の過度な T 細胞反応 を抑制するための機構であるが、がんに対する T 細胞 反応も強く抑制していることが明らかとなったため, 免疫チェックポイント分子に対する阻害抗体が、がん 治療薬として開発された. こうした抗体製剤を総称し て免疫チェックポイント阻害薬(immune checkpoint inhibitor: ICI) と呼ぶ、現在本邦で使用される ICI の 標的分子は CTLA-4 と PD-1 である. メラノーマにつ いては CTLA-4 の阻害抗体である ipilimumab, PD-1 の阻害抗体である nivolumab および pembrolizumab が承認されており、ipilimumab と nivolumab が併用可 能である. 共抑制シグナルを解除してがんに対する抗 原特異的なT細胞反応を増強させるのが作用機序で ある. 一方, 自己反応性 T 細胞を副次的に活性化した 結果, 免疫関連有害事象を起こすこともある. 効果と 有害事象の程度は個々の患者体内のもともとの免疫状 態に依存するため、個人差が大きい、一方で免疫は記 憶されるため、奏効例での効果が長いのが特徴である.

本邦の進行期メラノーマ治療における ICI の位置付けは、本ガイドラインの焦点の1つである。本邦の実臨床においては、欧米の臨床試験データよりも ICI の効果が低い可能性が指摘されてきた。その理由を説明する仮説として、人種や病型間における tumor mutational burden (TMB) の相違が注目されている。露光部に発生するメラノーマは紫外線の影響を強く受けるため TMB が高く、一方で末端型や粘膜型の TMB は比較的低い²⁶³⁾。 TMB は免疫系から異物として認識さ

記載項	試験	対象	試験名	コホート (例)	効果	grade3/4 AE	文献		
	第Ⅲ相	病期Ⅲ/Ⅳ		DTIC 850mg/m²+ipilimum-ab10mg/kg, Q3W (252)	OS 中央値 11.2 カ月	56.3%	(00)		
	ランダム化 比較試験	切除不能 未治療		DTIC 850mg/m ² +プラセボ, Q3W (250)	OS 中央値 9.1 カ月	27.5%	(320		
	第Ⅲ相	病期Ⅲ/Ⅳ 切除不能		ipilimumab10mg/kg, Q3W (137)	OS 中央値 10.1 カ月	22.9%			
	ランダム化比較試験	対除不能 治療歴あり HLA-A*		ipilimumab10mg/kg, Q3W +gp100 peptide (403)	OS 中央値 10.0 カ月	17.4%	(32		
	DO IN INVESTIGATION	0201		gp100 peptide (136)	OS 中央値 6.4 カ月	11.4%			
9.2 (1)	第Ⅲ相	病期Ⅲ/Ⅳ		ipilimumab10mg/kg, Q3W (364)	OS 中央値 15.7 カ月	34%	(20)		
	ランダム化 切除不能 比較試験	- 1.11除イ		切除不能		ipilimumab 3mg/kg, Q3W (362)	OS 中央値 11.5 カ月	18%	(322
	第Ⅲ相	病期Ⅲ/Ⅳ	CheckMate	nivolumab 3mg/kg, Q2W (210)	5年OS率 39%	16%	(22		
	ランダム化 比較試験	切除不能 未治療	066	DTIC 1,000mg/m², Q3W (208)	5年OS率 17%	18%	(324		
	第Ⅲ相ランダム化	病期Ⅲ/Ⅳ	KEYNOTE-	pembrolizumab 10mg/kg, Q2WないしはQ3W (556)	7年OS率 37.8%	16.7%	(325		
	サンダム化 比較試験	切除不能	006	ipilimumab 3mg/kg, Q3W (278)	7年OS率 25.3%	19.5%	(326		

れうる変異タンパク質(ネオ抗原)の生成量と関連すると考えられている³¹⁸⁾. そして欧米では露光部メラノーマがほとんどを占めるのに対して、本邦では末端型と粘膜型(非露光部)が5割以上を占める⁸⁾. そのため ICI の効果を全体として見たときに、TMB が低い(≒ネオ抗原が少ない)末端型と粘膜型を多く含む本邦で ICI の効果が低くなるのではないか、という説である。さらに、同じ病型間であっても、人種によって効果が異なる可能性を示した報告もある³¹⁹⁾. 現在、本邦における ICI の効果について病型ごとに検証した大規模な臨床試験は存在しないが、大規模なリアルワールドデータは存在する。本邦とは各病型割合の違いや人種差が問題となる海外の大規模臨床試験データとうまく組み合わせながら、本邦により適した治療選択を考えることが求められている.

9.2 進行期メラノーマに対する ICI

(1) 単剤療法の臨床試験データ (表 14)

1) 抗 CTLA-4 抗体 (ipilimumab)

本邦で承認されている抗 CTLA4 抗体 ipilimumab については、病期 III/IV の切除不能、未治療のメラノーマを対象とした欧米の第 III 相ランダム化比較試験 において、dacarbazine 850 mg/m²+ipilimumab

10 mg/kg 併用群の全生存期間 (overall survival: OS) が、dacarbazine 850 mg/m²+プラセボ群と比較して 有意に延長した(OS中央値:11.2カ月 vs 9.1カ月, ハザード比 (hazard ratio: HR) 0.72, 95% 信頼区間 (confidence interval : CI), $0.59 \sim 0.87$, P < 0.001). \rightarrow 方で grade 3/4 の重篤な有害事象発生率はそれぞれ 56.3%, 27.5% であった³²⁰⁾. また病期 III/IV の切除不 能, 既治療の HLA-A*0201 陽性メラノーマを対象とし た欧米の第 III 相ランダム化比較試験で、ipilimumab 10 mg/kg 群, ipilimumab 10 mg/kg+gp100 ペプチド ワクチン併用群, gp100ペプチドワクチン群の OS 中 央値はそれぞれ 10.1 カ月, 10.0 カ月, 6.4 カ月であっ た (ペプチドワクチン群 vs ipilimumab 群: HR 0.66, 95% CI 0.51~0.87, P=0.003). 一方で grade 3/4 の薬 剤関連有害事象発生率はそれぞれ22.9%,17.4%,11.4% であった³²¹⁾. 病期 III/IV の切除の切除不能, BRAF 阻 害薬および ICI で未治療のメラノーマを対象とした欧 米の第 III 相ランダム化比較試験では、ipilimumab 10 mg/kg と ipilimumab 3 mg/kg の比較で前者の OS が有意に延長したが (OS 中央値: 15.7 カ月 vs 11.5 カ 月, HR 0.84, 95% CI 0.7 \sim 0.99, P=0.04), grade 3/4 の治療関連有害事象発生率はそれぞれ34%,18%と前 者で多かった322).

記載項	試験	対象	試験名	コホート (例)	効果	grade3/4 AE	対対
				nivolumab 1mg/kg+ipili- mumab 3mg/kg, Q3W, 4回から nivolumab 3mg/ kg, Q2W (314)	OS 中央値 72.1 カ月 6.5 年 OS 率 49% RR(CR+PR): 58% (22% +36%)	59%	
9.2 (2)	第Ⅲ相 ランダム化 比較試験	病期Ⅲ/Ⅳ 切除不能 未治療	CheckMate 067	nivolumab 3mg/kg, Q2W (316)	OS 中央値 36.9 カ月 6.5 年 OS 率 42% RR(CR+PR): 45% (19% +26%)	23%	(329 (330
				ipilimumab 3mg/kg, Q3W, 4回 (315)	OS 中央値 19.9 カ月 6.5 年 OS 率 23% RR (CR+PR): 19% (6% +13%)	28%	

本邦における ipilimumab 単剤療法の効果を示す臨床試験としては、病期 III/IV の切除不能、BRAF 阻害薬や ICI による治療歴がない切除不能メラノーマを対象とした第 II 相臨床試験において、ipilimumab 3 mg/kg を 3 週間隔で 4 回投与した際の効果が検討された、奏効率(objective response rate: ORR)は 10%(部分奏効(partial response: PR): 2/20 例)、OS 中央値は 8.7 カ月(95% CI 3.71~未到達)であった.一方でgrade 3 の治療関連有害事象発生率は 15% であった³²³⁾.

2) 抗 PD-1 抗体 (nivolumab, pembrolizumab)

本邦で承認されている抗 PD-1 抗体は nivolumab と pembrolizumab である. Nivolumab について、病期 III/IV の切除不能、BRAF 野生型、未治療のメラノーマを対象とした欧米の第 III 相ランダム化比較試験 (CheckMate 066) では、nivolumab 3 mg/kg 2 週間隔投与群と dacarbazine 1,000 mg/m² 投与群が比較された. ORR、OS ともに nivolumab 投与群で優れており (ORR:42% vs 14%、OS 中央値:37.3 カ月 vs 11.2 カ月、HR 0.5、95% CI 0.4~0.63、P<0.0001)、5 年生存率はそれぞれ 39%、17% であった.一方で grade 3/4 の治療関連有害事象発生率は 16%、18% とほぼ同程度であった324).

Pembrolizumab については、病期 III/IV の切除不能、未治療ないしは既治療 (一次治療まで) のメラノーマを対象とした欧米の第 III 相ランダム化比較試験 (KEYNOTE-006) で、pembrolizumab 10 mg/kg 2 週間隔または3週間間隔投与群とipilimumab 3 mg/kg 3 週間隔投与群が比較された。ORR、OS ともに pembrolizumab 投与群で優れており(ORR:36.5% vs 13.3%、

OS 中央値: 32.7 カ月 vs 15.9 カ月, HR 0.70, 95% CI $0.58\sim0.83$), 7 年生存率はそれぞれ 37.8% と 25.3% であった. 一方で grade 3/4 の治療関連有害事象発生率はそれぞれ 16.7% と 19.5% であった $^{325,326)}$.

本邦における抗 PD-1 抗体療法の効果を示す臨床試 験としては,病期 III/IV,局所制御不能な前治療歴 (二 次治療まで) のあるメラノーマを対象とした第 Ib 相試 験では pembrolizumab 2 mg/kg を 3 週間隔投与した 際の効果が検証された. この試験には粘膜型が19% (8/42 例) 含まれており、粘膜型とそれ以外の皮膚メ ラノーマを比較すると ORR はそれぞれ 25%, 24.1%, OS 中央値は23.2 カ月、25.1 カ月、2 年生存率は25.7%、 57.0% であった. 一方で grade 3以上の治療関連有害 事象発生率は19%であった327. 同様に本邦で行われた 病期 III/IV の切除不能、未治療のメラノーマを対象と した第 II 相臨床試験では、nivolumab 3 mg/kg を 2 週 間隔投与した際の効果が検証された. この試験には粘 膜型と末端型がそれぞれ 25% (6/24 例), 29.2% (7/24 例) 含まれていた. 粘膜型, 末端型, 全集団の ORR は それぞれ 33.3%, 28.6%, 34.8% であり, 3 年生存率は 33.3%、28.6%、43.5%であった、全集団における OS 中 央値は32.9 カ月 (90% CI:12~未到達) であった. 一 方で grade 3/4 の治療関連有害事象発生率は全集団で 12.5% であった³²⁸⁾.

(2) Nivolumab+ipilimumab 併用療法の臨床試験 データ (表 15)

病期 III~IV の切除不能な未治療のメラノーマを対象とした欧米の第 III 相ランダム化比較試験 (Check-Mate 067) で、併用群 (nivolumab 1mg/kg+ipilim-

記載項	試験	対象	コホート (例)	効果	対対
		病期Ⅲ/Ⅳ 切除不能	抗 PD-1 抗体+抗 CTLA-4 抗体(32)	PFS 中央値 3.2 カ月,OS 中央値 NR RR: 31%	
	後方視的	未治療 手掌足底型	抗 PD-1 抗体(148)	PFS 中央値 5.9 カ月, OS 中央値 23.1 カ月 RR: 19%	(333
	観察研究	病期Ⅲ/Ⅳ 切除不能	抗 PD-1 抗体+抗 CTLA-4 抗体(13)	PFS 中央値 6.4 カ月, OS 中央値 23.1 カ月 RR: 61%	(000
		未治療 爪部型	抗 PD-1 抗体(61)	PFS 中央値 3.8 カ月,OS 中央値 13.2 カ月 RR: 10%	
	後方視的	切除不能	抗 PD-1 抗体+抗 CTLA-4 抗体 (66)	PFS 中央値 6.8 カ月, OS 中央値 20.1 カ月 RR: 29%	(00.4
9.2 (3)	観察研究	未治療 粘膜型	抗 PD-1 抗体(263)	PFS 中央値 5.9 カ月,OS 中央値 20.4 カ月 RR:26%	(334
	後方視的	切除不能 未治療	抗 PD-1 抗体+抗 CTLA-4 抗体 (33)	PFS 中央値 8.5 カ月,OS 中央値 NR RR:36%	
	観察研究	非末端型皮膚 メラノーマ BRAF 変異陰性	抗 PD-1 抗体(113)	PFS 中央値 6.1 カ月, OS 中央値 28.1 カ月 RR: 33%	(335
	後方視的	切除不能	抗 PD-1 抗体+抗 CTLA-4 抗体 (36)	PFS 中央値 5.8 カ月,OS 中央値 NR RR: 28%	(000
	観察研究	未治療 BRAF 変異陽性	抗 PD-1 抗体 (64)	PFS 中央値 5.4 カ月,OS 中央値 37 カ月 RB: 27%	(289

umab 3 mg/kg を 3 週間隔で 4 回投与し、その後 nivolumab 2 mg/kg を 2 週間隔で投与), nivolumab 群 (3 mg/kg を 2 週間隔), ipilimumab 群 (3 mg/kg を 3 週間隔で 4 回投与) が比較された。各群における ORR (完全奏効 (complete response: CR) + PR) はそれぞれ、58% (22% + 36%), 45% (19% + 26%), 19% (6% + 13%) で、OS 中央値は 72.1 カ月、36.9 カ月、19.9 カ月、6.5 年生存率はそれぞれ、49%、42%、23% であった。OS においては併用群と ipilimumab 群との比較、および nivolumab 群と ipilimumab 群との比較ではいずれも ipilimumab 群より有意に延長した(HR 0.52、95% CI 0.43~0.64、P<0.0001,HR 0.63、95% CI 0.52~0.76、P<0.0001). 一方で grade 3/4 の有害事象発生率はそれぞれ 59%、23%、28% であった^{329、330)}.

CheckMate 067では nivolumab + ipilimumab 併用療法と nivolumab との統計学的な直接比較はできないものの,併用群で効果も有害事象も増強する傾向が示されたため,画一的に併用を行うべきか,併用が必要な患者を選択して使用すべきか,患者選択の基準は何か,などの検討課題が出てきた.この臨床試験では併用による有益性が高いサブグループの同定も行われた.その結果,BRAF遺伝子変異陽性グループで,併用群は nivolumab 群よりも OS の延長傾向が見られた

(BRAF 遺伝子変異陽性グループの 6.5 年生存率: 57% vs 43%, BRAF 遺伝子変異陰性グループの 6.5 年生存率: 46% vs 42%) ³³⁰.

本邦における併用療法の効果を示す臨床試験データとしては、病期 III/IV の切除不能な未治療メラノーマを対象とした第 II 相臨床試験では、nivolumab 1 mg/kg+ipilimumab 3 mg/kgを3週間隔で4回投与し、その後 nivolumab 2 mg/kgを2週間隔で投与した際の効果が検証された。この試験には粘膜型が40%(12/30例)、末端型が23%(7/30例)含まれていた.粘膜型、末端型、全集団のORR はそれぞれ、33.3%、42.9%、43.3%で、全集団の30カ月生存率は54.2%であった.一方でGrade 3/4の治療関連有害事象発生率は全集団で76.7%であった331.332).

(3) 本邦の代表的な大規模リアルワールドデータ (表 16)

ここまで紹介した本邦の臨床試験データは欧米と比較して粘膜型,末端型を比率として多く含むが,患者数が少ないという欠点がある.その欠点を補う目的で,近年本邦より各病型別の大規模なリアルワールドデータが相次いて報告されている. それぞれの特徴と限界を認識しながら利用しつつ,本邦のメラノーマ患者にとって最善の治療方針を検討してゆくことが重要であ

る. ここでは本邦のそれぞれの病型についての、代表的なリアルワールドデータを紹介する.

本邦の末端型メラノーマで、病期 III/IV, ICI で未治療の切除不能例 254 例について、抗 PD-1 抗体+抗 CTLA-4 抗体併用療法と抗 PD-1 抗体の効果が検討された。手掌足底メラノーマにおいては併用療法と単剤療法の効果に有意差はなかった(ORR: 31% vs 19%, P=0.44,無増悪生存期間(progression-free survival: PFS)中央値: 3.2 カ月 vs 5.9 カ月、HR 1.08、95% CI 0.67~1.75、P=0.74、OS 中央値:未到達 vs 23.1 カ月、HR 0.82、95% CI 0.42~1.58、P=0.55)、爪部メラノーマにおいては併用療法と単剤療法の効果についてORR は有意に併用療法で上昇したが、PFS、OSでは両群間に有意差はなかった(ORR: 61% vs 10%、P<0.001、PFS 中央値: 6.4 カ月 vs 3.8 カ月、HR 0.54、95% CI 0.25~1.14、P=0.10、OS 中央値: 23.1 カ月 vs 13.2 カ月、HR 0.68、95% CI 0.42~1.58、P=0.55)³³³⁾。

本邦の進行期粘膜型メラノーマで、ICI で未治療の 切除不能例 329 例について、抗 PD-1 抗体+抗 CTLA-4 抗体併用療法と抗 PD-1 抗体の効果が検討されたが、併用療法と単剤療法の効果に有意差はなかった (ORR: 29% vs 26%、P=0.32、PFS中央値: 6.8 カ月 vs 5.9 カ月、P=0.55、OS中央値: 20.1 カ月 vs 20.4 カ月、P=0.55) 334)。

本邦における末端型と粘膜型以外のいわゆる露光部 メラノーマについては、BRAF変異陰性群とBRAF変 異陽性群(一部に末端型と粘膜型を含む), それぞれの リアルワールドデータが存在する. BRAF 変異陰性の 進行期露光部メラノーマ 146 例について抗 PD-1 抗体 + 抗 CTLA-4 抗体併用療法と抗 PD-1 抗体の効果を検 討した報告では、併用療法と単剤療法の効果差はな かった (ORR: 36% vs 35%, PFS 中央値: 8.1 カ月 vs 6.5 カ月、HR 0.83、95% CI 0.74~1.93、P=0.46、OS 中央值:未到達 vs 28.1, HR 0.85, 95% CI 0.48~1.53, P=0.59)³³⁵. 一方で BRAF 変異陽性の進行期メラノー マ 100 例について抗 PD-1 抗体 + 抗 CTLA-4 抗体併用 療法と抗 PD-1 抗体の効果を検討した報告では、併用 療法と単剤療法の効果に大差はなかった (ORR: 28% vs 27%, PFS 中央値: 5.4 カ月 vs 5.8 カ月, OS 中央 値:未到達 vs 37 カ月)289).

9.3 脳転移 (表 17)

(1) Ipilimumab 単剤の臨床試験データ

0.5~3 cm の脳転移巣を1個以上有するメラノーマ

患者を対象とした欧米の非盲検化第 II 相試験では、ipilimumab 10 mg/kg を 3 週間隔で 4 回投与した際の効果が検討された。神経症状がなくコルチコステロイドの投与を受けていないコホート A では頭蓋内病変の疾患制御率(CR+PR+安定(stale disease:SD))が 24% (0%+16%+8%)で OS 中央値が 7 カ月(95% CI:4.1~10.8)、神経症状がありコルチコステロイド投与で安定しているコホート B では疾患制御率は <math>10% で OS 中央値 3.7 カ月(95% CI:1.6~7.3)であった.一方で grade 3/4 の治療関連有害事象発生率はそれぞれコホート A で 14.7% およびコホート B で 3.4% であった。3360

(2) Nivolumab+ipilimumab 併用療法の臨床試験 データ

局所療法による治療歴のない無症候性の, 0.5~4 cm の脳転移巣を1個以上もつメラノーマ患者を対象とし た欧米の非盲検化第II相試験では、コホートA (nivolumab 1 mg/kg+ipilimumab 3 mg/kgを3週間 隔で4回投与し、その後 nivolumab 3 mg/kg を2週間 隔で投与), コホートB (nivolumab 3 mg/kgを2週 間隔で投与)、コホートC (局所療法歴がある患者に nivolumab 3 mg/kgを2週間隔で投与)が比較され た. 頭蓋内病変の ORR (CR+PR) はそれぞれコホー トAで46% (17%+29%), Bで20% (12%+8%), C で6% (0%+6%), OS 中央値および6カ月生存率はコ ホートAで未到達 (95% CI: 8.5~未到達) および 78%, Bで18.5カ月(95% CI:6.9~未到達) および 68%, Cで5.1カ月 (95% CI:1.8~未到達) および44% とコホートAでOS延長傾向であった。一方でgrade 3/4の治療関連有害事象発生率はそれぞれ54%,16%, 13%であった³³⁷⁾. そして最近報告されたコホート A. Bの5年生存率はそれぞれ51%,34%であった338).

0.5~3 cm の無症候性脳転移病巣を 1 個以上有するメラノーマ患者を対象とした欧米の非盲検化II 相試験では、nivolumab 1 mg/kg + ipilimumab 3 mg/kg を 3 週間隔で4 回投与し、その後 nivolumab 3 mg/kg を 2 週間隔で投与しつつ経過観察された、頭蓋内病変のORR (CR+PR) は 54% (33%+21%)、OS 中央値は未到達で、6 カ月生存率、3 年生存率はそれぞれ 92.3%、71.9%であった。一方で grade 3/4 の治療関連有害事象発生率は 55%で、心筋炎による死亡が 1 例みられた339.340)。

0.5~2 cm の無症候性脳転移巣を1個以上有するメラノーマ患者を対象とした欧米の第 III 相ランダム化

記載項	試験	対象	コホート (例)	効果	grade 3/4 AE	対文
0.0.(1)	第Ⅱ相	1 個以上の	A:神経症状 (-), コルチコステロイド投与 (-) ipilimumab 10mg/kg, Q3W, 4回 (51)	頭 蓋 内 DCR (CR+PR+SD): 24% (0% + 16% + 8%), OS 中央値 7 カ月	14.7%	(000
9.3 (1)	非盲検化 比較試験	0.5 ~ 3cm の脳転移	B:神経症状(+), コルチコステロイド投与(+) ipilimumab 10mg/kg, Q3W, 4回(21)	頭 蓋 内 DCR(CR+PR+SD): 10%(5% +0% +5%) OS 中央値 3.7 カ月	3.4%	(336
			A:nivolumab 1mg/kg+ipilimumab 3mg/kg, Q3W, 4回からnivolumab 3mg/kg, Q2W (35)	頭蓋内RR(CR+PR): 46%(17% +29%) OS中央値: NR 6カ月OS率: 78%5年OS率: 51%	54%	
	第Ⅱ相 非盲検化 比較試験	1 個以上 神経症状(-) 局所治療歴(-) 0.5~4cmの脳転移	B: nivolumab 3mg/kg, Q2W (25)	頭蓋内RR(CR+PR): 20%(12% +8%) OS中央値: 18.5カ月, 6カ月 OS率: 68%5年OS率: 34%	16%	(337 (338
			C:nivolumab 3mg/kg, Q2W (局所治療歴あり)(16)	頭蓋内 RR (CR+PR): 6% (0% +8%) OS 中央値: 5.1 カ月, 6 カ月 OS 率: 44%	13%	6
9.3 (2)	第Ⅱ相 2) 試験 (CM204)	式験 神経症状(一)	nivolumab 1mg/kg+ipilimum- ab 3mg/kg, Q3W, 4回から nivolumab 3mg/kg, Q2W(101)	頭蓋内RR(CR+PR):54%(33%+21%) OS中央値:NR,6カ月OS率:92.3%,36カ月OS率:71.9%	55%	(339 (340
			nivolumab 1 mg/kg+ipilimum- ab 3mg/kg, Q3W, 4回から nivolumab 3mg/kg, Q2W (27)	頭 蓋 内 RR (CR+PR): 44.4% (37%+7.4%) OS 中 央 値: 29.2 カ 月 4年 OS 率: 41%	30%	
	第Ⅲ相 ランダム化 比較試験 (NIBIT-M2)	1 個以上 神経症状 (-) 0.5 ~ 2cm 脳転移	fotemustine は 下記, ipilimum- ab 10 mg/kg, Q3W, 4回から はQ12W (26)	頭 蓋 内 RR (CR+PR): 19.2% (7.7%+11.5%) OS 中央値: 8.2 カ月 4年 OS 率: 10.3%	69%	(341
			fotemustine 100mg/m² Q1W, 4回からは Q3W (23)	頭蓋内 RR (CR+PR): 0% (0% +0%) OS 中央値: 8.5 カ月 4年 OS 率: 10.9%	48%	•

比較試験では、nivolumab + ipilimumab 併用療法群 (nivolumab 1 mg/kg, ipilimumab 3 mg/kgを3週間隔で4回投与し、その後 nivolumab 3 mg/kgを2週間隔で投与)、fotemustine + ipilimumab 併用療法群 (ipilimumab 10 mg/kgを3週間隔で4回投与し、その後12週間隔で投与)、fotemustine群の3群が比較された、頭蓋内病変のORR (CR+PR) はそれぞれ44.4% (37%+7.4%)、19.2% (7.7%+11.5%)、0% (0%+0%)、OS中央値および4年生存率はそれぞれ29.2カ月(95% CI:0~65.1) および41%、8.2カ月(95% CI:2.2~14.3) および10.3%、8.5カ月(95% CI:4.8~12.2) および10.9%であった。Nivolumab + ipilimumab 併用療法群と fotemustine 群の比較では前者で有意にOSが

延長した(HR 0.44, 95% CI 0.22 \sim 0.87, P=0.017). 一方で grade 3/4 の治療関連有害事象発生率はそれぞれ 30%, 69%, 48%³⁽¹⁾であった.

脳転移は腫瘍量の増大が生命予後に大きく影響するため、実臨床では ICI と局所療法(手術療法や放射線療法など)が併用されることが多い。そのため、ICI と局所療法を併用する利益や最適化の検証も重要であり、それについては本ガイドラインの CQ9 にて検討している。

9.4 課題

ICI はメラノーマ以外のがんにおいても従来の標準 治療より優れた効果が示され、保険適用が相次いでい る. そのため適正使用の基準について議論が続いている. 一方で臨床試験の結果やこれまでの使用経験から,効果と有害事象の程度は個人差が大きいこと,効果と有害事象はある程度関連すること,強い効果が発揮されたケースでは治療を中止しても効果がある程度維持されること,が示されている. 以上の背景より ICI の重要課題には,以下の項目が挙げられるだろう.

- (1) 投与前に利益と不利益を推定する指標の確立
- (2) 投与中止や変更を判断する基準の確立
- (3) 有害事象への対処法の確立
- (4) 治療抵抗性を克服するための新規治療法の開発 これらの現状について最近の臨床研究,基礎研究の 観点より述べる.

(1) 投与前に利益と不利益を推定する指標の確立

以下に、現在有力視されているバイオマーカーの候補を列挙する.

1) TMB

がん細胞に起こる体細胞遺伝子変異は翻訳されるア ミノ酸を変化させる結果、本来は人体に存在しない蛋 白質 (ネオ抗原) を産生する. ネオ抗原に対しては胸 腺での negative selection を含めた T 細胞免疫寛容が 成立していない (ネオ抗原に強く反応する T細胞が排 除されていない)ため、TMBが高い(ネオ抗原生成 が多いことが予想される)がんでは抗CTLA-4抗体や 抗 PD-1 抗体によって強いネオ抗原特異的 T 細胞反応 が惹起されやすいと考えられている. 実際に、DNA ミ スマッチ修復欠損(Mismatch Repair Deficiency: dMMR) に基づくマイクロサテライト不安定性 (Microsatellite instability: MSI) が検出された多種類の固 形癌を対象とした臨床試験では抗 PD-1 抗体が著効し た (ORR 53%, CR 21%)³⁴²⁾. 同様に多種類の固形癌に 対する pembrolizumab の効果と TMB の関連を調べた 臨床試験では、TMB が 10 mutations/Mb 以上の群は 未満の群と比較して、ORRが高かった343). これらの結 果に基づいて本邦でも現在、MSI 陽性のがん、DNA ミスマッチ修復に関与するタンパク質(MLH1, PMS2, MSH2, MSH6) の発現消失が検出されたがん、ある いは TMB が 10 mutations/Mb 以上検出された (TMBhi) がんで、いずれも標準治療が無効・継続困難な場 合について、がん腫に関わらず pembrolizumab を使用 することが承認されている.

2) 腫瘍組織の PD-L1 発現率

PD-L1 はがんを認識して活性化した腫瘍特異的T細胞が放出する IFN-γ に反応してがん細胞が表出する分

子であることから、がんに対する治療前の CTL 反応 の程度を間接的に表す指標と考えられる。様々ながん 腫において、治療前がん組織における PD-L1 発現量が 多い程、抗 PD-1 抗体が奏効する傾向が確認されている 344.345).

3) 腫瘍周囲への CTL 浸潤

抗 PD-1 抗体治療を受けた進行期メラノーマ患者の治療前腫瘍組織の状況を、奏効例と無効例で比較した研究では、腫瘍浸潤 CTL の数の多さ、腫瘍浸潤 PD-1 陽性細胞数の多さ、腫瘍組織の PD-L1 発現の高さ、の順に、抗腫瘍効果と相関することが報告された³⁴⁵⁾. 現在想定されている抗 PD-1 抗体の主な作用機序である、腫瘍浸潤 PD-1 陽性 CTL の活性化という観点からは最も理解しやすい結果である.

(2) 投与中止や変更を判断する基準の確立

ICI による効果が発現した後に投与を中断しても、特に CR 例においてはその効果が長期間維持されることを示すデータが多く存在する^{346~348)}. Nivolumab + ipilimumab 併用療法については重篤な免疫関連有害事象によって投与を中止した群と、投与を継続できた群の予後に差がなかったというデータも存在する³⁴⁹⁾. 一方で実臨床においては中止すべき理由(重篤な有害事象など)がない限りは、奏効しなかったとしても持続的な免疫賦活化を期待して投与を継続される例も少なくない. しかし ICI 無効例において様々な治療抵抗性機序が働いていることも示されている^{550~352)}. 投与中止や変更を判断する基準については本ガイドラインのCQ11 および CQ12 にて検討されている.

(3) 有害事象への対処法の確立

ICI 投与によって障害される臓器は皮膚、消化管、内分泌器官など様々であり、現状でその時期、部位、程度を予測する指標はない、そのため、早期発見、対処に努めることが最も重要である。重篤化すると患者の quality of life や生命予後に関わるためとりわけ注意が必要なのは大腸炎、間質性肺炎、下垂体炎、I型糖尿病、重症筋無力症などである。発生時期は ICI 投与開始後数カ月が多いとされるが、抗 PD-1 抗体単剤よりも抗 PD-1 抗体+抗 CTLA-4 抗体併用の方が早く、高頻度に出現する 3530. ICI 投与中は定期的に、詳細な問診、診察、血液検査(血算、一般生化学、間質性肺炎のマーカー(KL-6)、糖尿病スクリーニング(へモグロビン A1c)、甲状腺機能マーカー(TSH、free T3、free T4)、筋炎マーカー(CK)など)、さらに必要に応じて胸部単純 X 線や全身 CT などの画像検査を実施

する. なお ICI による有害事象が発生した際に迅速かつ適切に対応するためには, 職種横断的な連携が不可欠である. ICI を使用する診療科の医師, 各臓器の自己免疫, 自己炎症性疾患専門の医師, 看護師, 薬剤師, などでチームを編成し, 定期的な連絡会議, 勉強会を通じて有害事象発生時の連絡先, 患者情報, 最新の知識などを共有することが重要である.

ICI による重篤な免疫関連有害事象に対しては積極 的にステロイドや免疫抑制剤を全身投与する必要があ る. 抗腫瘍効果も有害事象も薬剤の作用ではなく, ICI が惹起した持続する免疫反応であることを念頭に置く 必要がある. ステロイドや免疫抑制剤投与が ICI の抗 腫瘍効果や患者の予後に影響することが危惧される が、抗CTLA-4 抗体による治療において、有害事象な どでステロイドの全身投与を要した群と要さなかった 群を比較した解析では、PFS、OSともに有意差がな かった354). この論文では有害事象発現の有無で分けた 2群間比較でも有意差が無かったとしているが、ICI 投 与後の抗腫瘍効果と有害事象発生の関連を示す論文も 散見される355). 抗 PD-1 抗体についても、治療後に皮 膚障害(発疹や白斑)が観察された群の ORR や予後 が良いことが報告されている356.357). 少なくとも免疫関 連有害事象に対する治療が患者予後を悪化させること を示す強いデータは存在しないため、quality of life や 生命予後の悪化をきたさないように、迅速で慎重な対 応が求められる.

(4) 治療抵抗性を克服するための新規治療法の開発

以下に、臨床試験の結果より現在有力視されている 新規治療法の候補を列挙する.

1) 腫瘍溶解ウイルス

切除不能な局所病変を制御する治療法として,放射線療法と並んで期待されているのが腫瘍溶解ウイルスである.これらについてはICIの効果を増強する作用も期待されている。ICIの効果は主に,治療前から腫瘍内に抑制状態で存在する腫瘍特異的 T 細胞によって担われる.そのため腫瘍特異的 T 細胞を多く浸潤させた状態にしてから ICI を投与するのが理想的とされる³⁵⁸⁾.腫瘍溶解ウイルスについては標的病変に腫瘍特異的 T 細胞を浸潤させることで ICI 投与により惹起される局所の抗腫瘍免疫を増強し,その反応をさらに局所療法を行わない病変まで波及させる(遠隔効果)可能性も期待されている.

病期 III/IV の切除不能な未治療のメラノーマを対象とした欧米の第 III 相ランダム化比較試験では、初の

腫瘍溶解ウイルス製剤である talimogene laher-parepvec (T-VEC) (保険適用なし) と抗腫瘍サイトカインである GM-CSF (保険適用なし) をそれぞれ単独で腫瘍内投与した際の効果が比較された. Modified WHO criteria で評価された ORR はそれぞれ 31.5% と6.4%, 長期 ORR (6カ月以上継続する奏効の割合) はそれぞれ 19.3% と 1.4% でいずれも T-VEC が有意に優れていた (いずれも P<0.0001). OS も有意に T-VEC で延長しており (OS 中央値: 23.3カ月 vs 18.9カ月, HR 0.79, 95% CI 0.62~1.00, P=0.0494), 特に病期 IIIB~IV M1a, 腫瘍総面積が 14.5 cm²未満の比較的病期が早いサブグループで効果が高い傾向がみられた⁵⁵⁹).

さらに病期 III/IV の切除不能な未治療のメラノーマを対象とした欧米の第 II 相ランダム化比較試験では、T-VEC + ipilimumab 併用療法の効果と ipilimumab の効果が比較された^{360,361)}. Immune-related response criteria で評価された ORR はそれぞれ 35.7%, 16% であり、腫瘍内注入を行わなかった内臓病変の縮小が52%, 23% でみられた. PFS 中央値はそれぞれ 13.5 カ月、6.4 カ月(HR 0.78、95% CI 0.55~1.09、P=0.14)、推定5年生存率はそれぞれ54.7%、48.4% であった. 以上から、腫瘍縮小効果はあるが、生存期間に寄与しない結果と考えられた. 一方で grade 3/4 の治療関連有害事象発生率はそれぞれ 46.3% と 43.2% であった.

病期 III/IV の, 抗 PD-1 抗体の治療歴のない切除不能メラノーマを対象とした第 III 相ランダム化比較試験では, T-VEC+pembrolizumab 併用療法と pembrolizumab の効果が比較された. 両者の ORR および生存期間に有意差はなかった (ORR: 48.6% vs 41.3%, PFS中央値: 14.3 カ月 vs 8.5 カ月, HR 0.86, 95% CI 0.71~1.04, P=0.13, OS中央値: 未到達 vs 49.2 カ月, HR 0.96, 95% CI 0.76~1.22, P=0.74). Grade 3/4 の重篤な治療関連有害事象の頻度はそれぞれ 20.7% と 19.5% と同程度であった3620.

2) 次世代 ICI

抗PD-1抗体や抗PD-1抗体+抗CTLA-4抗体併用療法において十分な効果が得られない症例があること、併用療法においては重篤な有害事象が高頻度に起こることより、抗PD-1 抗体の効果を増強しつつ、重篤な有害事象の頻度が増えないような新規ICIの開発が望まれている。LAG-3はPD-1と同様にT細胞の機能を負に制御するチェックポイント分子であり、その阻害抗体として開発されたのがrelatlimab(保険適用なし)である。抗PD-1 抗体療法後に進行した切除不能メラ

ノーマを対象に nivolumab + relatlimab 併用療法 (nivolumab-relatlimab 固定用量配合剤) の効果を検証 した欧米の第 I/II 相臨床試験では、抗 PD-1 抗体を含 む既治療が1レジメン以内の群における ORR, PFS 中 央値, OS 中央値はそれぞれ 12%, 2.1 カ月 (95% CI 1.9~3.5), 14.7 カ月 (95% CI 12.4~16.9) であり、そ れ以上の既治療歴を有する群ではそれぞれ9.2%,3.2 カ月 (95% CI 1.9~3.6)、17.1 カ月 (95% CI 13.4~21.0) であった³⁶³⁾. 病期 III/IV の切除不能な未治療のメラ ノーマを対象とした欧米の第 II/III 相ランダム化比較 試験では, relatlimab + nivolumab併用療法と nivolumab の効果が比較され、PFS は有意に延長した (PFS 中央値: 10.1 カ月 vs 4.6 カ月, HR 0.75, 95% CI 0.62~0.92, P=0.006). 1年無増悪生存率はそれぞれ 47.7% と 36% であった. 一方で grade 3/4 の治療関連 有害事象発生率はそれぞれ 18.9% と 9.7% であり, これ までに報告された nivolumab + ipilimumab 併用療法に おける有害事象よりも nivolumab + relatlimab の有害 事象の方が低い傾向があった364).

3)細胞移入療法

腫瘍特異的T細胞を活性化することを目的としつつ、副次的に自己反応性T細胞も活性化してしまうのが現状のICIであり、抗腫瘍効果と有害事象の予測・差別化は困難である。そのため腫瘍特異的T細胞を採取して体外で十分に増殖活性化させ、最適な状態で体内に輸注するという細胞移入療法は合理的な戦略の一つである。現在、メラノーマに対する細胞移入療法として、腫瘍浸潤リンパ球(Tumor infiltrating lymphocyte:TIL)療法(保険適用なし)とT細胞受容体(T cell receptor:TCR)遺伝子導入T細胞(TCR-T)移入療法(保険適用なし)の開発研究が進んでいる365.

TIL 療法は米国の国立がん研究所外科を中心に 1980 年代から開発が進められてきた治療法である. 10%~20% に見られる CR 例のほとんどは TIL 療法後 無治療で再発がない (≒治癒) ことが示されてきた. そして付随研究によって, がんを拒絶する腫瘍特異的 T 細胞は TIL の中に豊富に存在すること, それらは PD-1 等の免疫チェックポイント分子によって選択的に抑制を受けていること, それらの抑制を解除すれば強い抗腫瘍活性を回復できること, が示されてきた366,367). TIL療法は煩雑なため普及が困難であったが, 効果増強と簡便化を目指した研究によって365), 現在では米国を中心とした世界中の施設で実施可能となっている. 特筆すべきは, 病期 III/IV のほとんどが抗 PD-1

抗体療法無効後の切除不能メラノーマに対するランダム化比較試験において 168 例が参加し、TIL 療法を受けた群の PFS が ipilimumab 群を有意に上回ったことである (ORR: 49% vs 21%, PFS 中央値 7.2 カ月 vs 3.1 カ月, HR 0.50, 95% CI 0.35~0.72, P<0.001, OS中央値: 28.5 カ月 vs 18.9 カ月, HR 0.83, 95% CI 0.54~1.27) ³⁶⁸

さらに最近ではTILの研究を通して得られた知見と技術によって、ネオ抗原特異的T細胞を人工的に作成して移入する治療(TCR-T)の開発も進んでおり、症例報告ながら、他のがん腫における奏効例も報告されている。この方法はICIやTIL療法で利用されるような、強い抗腫瘍効果を持つT細胞が体内に存在しない患者をも治療可能である。ネオ抗原は患者ごとに異なるため高度な個別化医療となるなどの障壁があるが、頻度の高いHLAに拘束されるcommon driver変異に由来する抗原を認識するTCRをライブラリーとして整備しつつ、より多くの患者に対応するための工夫が重ねられている^{369,370)}.

9.5 おわりに

進行期メラノーマ患者の予後を劇的に改善した ICI であるが、本邦での承認以降 10 年以上が経過し、その 限界と課題が浮き彫りになってきた感がある。特に、 欧米と比較した場合の本邦における ICI の効果の低さ は大きな問題である。今後は本邦や東アジアの状況に 即したガイドラインや治療戦略を構築することが重要 課題の一つとなる。そのためには焦点を絞った臨床試験やリアルワールドデータ調査、トランスレーショナル研究を継続してゆくことが不可欠である。

欧米ではメラノーマはがん免疫療法が最も奏効する 腫と考えられている。そのため現在も今後も新規がん 免疫療法の開発はメラノーマを中心に進むことが予想 される。本邦でメラノーマ診療に携わる医師は、欧米 と本邦の違いを念頭に置きつつ最新の情報をアップ デートし、本邦におけるエビデンスの創出や個別化医療に向けた研究推進にも貢献することが重要である。

10. 免疫チェックポイント阻害薬と分子標的薬の併用療法および逐次投与

10.1 併用療法

2014年以降, 免疫チェックポイント阻害薬 (immune

記載項	試験	対象	試験名	コホート (人数)	効果	Grade 3/4 AE	猫文
10.1	第Ⅲ相 二重盲検化 ランダム化 比較試験	病期Ⅲc,Ⅳ 切除不能 未治療	IMspire 150	vemurafenib 960mg+cobimetinib 60mg を 21 日間投与後に、vemurafenib 720mgを 7日間投与 その後、atezolizumab 840mg Q2W+vemu- rafenib 720mg+cobimetinib 60mg (256)	PFS 中央値 15.1 カ月 OS 中央値 39.0 カ月	79%	(298,
10.1				vemurafenib 960mg+cobimetinib 60mgを21日間投与後に、vemurafenib 960mgを7日間投与その後、placebo Q2W+vemurafenib 960mg+cobimetinib 60mg (258)	PFS 中央値 10.6 カ月 OS 中央値 25.8 カ月	73%	371)

checkpoint inhibitor: ICI) の進行期メラノーマに対する有効性が示され、標準治療の一つとなったが、抗PD-1 抗体単剤療法や抗PD-1 抗体+抗CTLA-4 抗体併用療法において十分な効果が得られない例があること、併用療法においては重篤な有害事象が高頻度に起こることより、抗PD-1 抗体の効果を増強しつつ、重篤な有害事象の発生率が増えないような新規併用薬の開発が望まれている。

進行期メラノーマにおける ICI と分子標的薬との併 用療法の臨床試験について紹介する (表 18). 病期 IIIC~IV の切除不能な未治療の BRAF^{V600E/K/D/R} 変異を 有するメラノーマを対象とした欧米の第 III 相ランダ ム化比較試験で、atezolizumab (抗PD-L1 抗体)+ cobimetinib (保険適用なし) + vemurafenib 併用投与 群 (n = 256) とプラセボ + cobimetinib (保険適用なし) + vemurafenib 併用投与群 (n = 258) が比較された^{298, 371)} (表 18). 主要評価項目の無増悪生存期間 (progressionfree survival: PFS) では前者が有意に延長した (PFS 中央値:15.1 カ月 vs 10.6 カ月, ハザード比(hazard ratio: HR) 0.79, 95% 信頼区間 (confidence interval: CI) 0.63~0.97, P=0.025)²⁹⁸⁾. 一方, 副次評価項目の 全生存期間 (overall survival: OS) では両群間に有意 差はなかった (OS 中央値: 39.0 カ月 vs 25.8 カ月, HR 0.84, 95% CI 0.66~1.06, P=0.14)³⁷¹⁾. Grade 3/4 の治 療関連有害事象発生率は、それぞれ79%、73%であっ た298). この試験結果を踏まえ、2020年に本3剤併用療 法は米国食品医薬品局(Food and Drug Administration: FDA) で薬事承認されている.

10.2 逐次投与

(1) 免疫チェックポイント阻害薬と分子標的薬の逐次 投与

BRAF遺伝子変異陽性例の場合、ICI および分子標的薬のいずれを一次治療として選択すべきかが問題となる。欧米において、これらの薬物療法の薬剤投与の優先順位を検討するランダム化比較試験が実施された。ICI と分子標的薬の逐次投与に関する臨床試験について紹介する。

1) 欧米における BRAF遺伝子変異陽性例の臨床試験 データ(表 19)

病期 III~IV の切除不能な未治療(抗 PD-1 抗体,抗 CTLA-4 抗体、BRAF/MEK 阻害薬の術後補助療法を 受けた患者は除外)のBRAFV600E/K遺伝子変異を有する メラノーマを対象とした欧米の非盲検化第 III 相ラン ダム化比較試験 (DREAMseq) で, nivolumab+ipilimumab 併用投与し (アーム A)、病勢の進行がみられ た時点で dabrafenib + trametinib 併用投与に切り替え る (アーム C) 群 (n=133) と, dabrafenib+trametinib 併用投与し(アームB),病勢の進行がみられた時点で nivolumab + ipilimumab 併用投与に切り替える(アー ムD) 群 (n=132) が比較された372 (表19). 主要評価 項目の2年生存率は、nivolumab+ipilimumab併用投 与を先行した群および dabrafenib + trametinib 併用投 与を先行した群で、それぞれ71.8% (95% CI 62.5~ 79.1), 51.5% (95% CI 41.7~60.4) で, nivolumab+ ipilimumab 併用投与を先行した群が有意に高かった (P=0.010). 副次評価項目の一つある奏効率 (objective response rate: ORR) 11, 46.0% (95% CI 36.6~55.6), 43.0% (95% CI 33.8~52.6) であった. 両群の患者背景

記載項	試験	対象	試験名	コホート(人数)	効果	Grade3 以上の AE	文献
	第Ⅲ相 非盲検化 ランダム化 比較試験	病期Ⅲ,Ⅳ 切除不能 未治療 BRAF 変異 陽性	Dream- seq	nivolumab 1mg/kg+ipili- mumab 3mg/kgをQ3W, 4回投与後に、nivolumab 240mgをQ2Wで投与 病勢進行がみられたら、dab- rafenib 150mg+tra- metinib 2mg投与(133)	2年全生存率 71.8% RR 46.0%	59.5% (nivolumab+ ipilimumab 投与期) 53.8% (dabrafenib +trametinib 投与期)	(372)
				dabrafenib 150mg+tra- metinib 2mg 投与 病勢進行がみられたら, nivolumab 1mg/kg+ipili- mumab 3mg/kgをQ3W, 4回投与後に, nivolumab 240mgをQ2W投与(132)	2年全生存率 51.5% RR 43.0%	53.1% (dabrafenib +trametinib 投与期) 50.0% (nivolumab+ ipilimumab 投与期)	(3/2
10.2 (1) 1)	第Ⅱ相 非盲検化 ランダム化 比較試験	病期Ⅲ,Ⅳ 切除不能 未治療 BRAF 変異 陽性	SECOM- BIT	encorafenib 450mg+bin- imetinib 45mg投与 病勢進行がみられたら, nivolumab 1mg/kg+ipili- mumab 3mg/kgをQ3W, 4回投与後に, nivolum- ab 3mg/kgをQ2W投与 (69)	2年全生存率 65% RR (CR+PR) 87.0% (26.1% +60.9%)	39%(Grade3/4のみ)	
				nivolumab 1 mg/kg+ipili- mumab 3 mg/kg を Q3W, 4 回投 与後に、nivolumab 3 mg/kg を Q2W で投与 病勢進行がみられたら、en- corafenib 450 mg+bin- imetinib 45 mg 投与 (71)	2年全生存率 73% RR (CR+PR) 44.9% (17.4% +27.5%)	59%(Grade3/4のみ)	(373
				encorafenib 450mg+bin- imetinib 45mgを8週間投 与 その後, nivolumab 1mg/ kg+ipilimumab 3mg/kg をQ3W, 4回投与後に、 nivolumab 3mg/kgを Q2W投与(69)	2年全生存率 69% RR (CR+PR) 82.4% (30.9% +51.5%)	38%(Grade3/4のみ)	

に概ね差はみられなかったが、dabrafenib+trametinib 併用投与を先行した群では nivolumab+ipilimumab 併用投与を先行した群と比較し BRAF $^{\text{V600K}}$ 遺伝子変異の割合が高い傾向がみられた点(25.2% vs 12.1%)、未治療例に対する dabrafenib+trametinib 併用投与の奏効率に既報と異なる傾向がみられた点に留意が必要である。一方で grade $3\sim5$ の治療関連有害事象発生率は、それぞれ 59.5% (アーム A)、53.1% (アーム B)、53.8% (アーム C)、50.0% (アーム D) であった 372 .

病期 III~IV の切除不能な未治療(抗 PD-1 抗体,抗 CTLA-4 抗体の術後補助療法後 6 週間以内の患者,BRAF 阻害薬の術後補助療法を受けた患者は除外)のBRAF^{V600} 遺伝子変異を有するメラノーマを対象とした欧米の非盲検化第 II 相ランダム化比較試験(SECOMBIT)で、encorafenib+binimetinib 併用療法を開始し、病勢の進行がみられた時点で nivolumab+ipili-

mumab 併用療法に切り替える群 (アーム A, n=69), nivolumab + ipilimumab 併用を開始し、病勢の進行が みられた時点で encorafenib + binimetinib 併用療法に 切り替える群 (アーム B, n=71), encorafenib+binimetinib 併用療法を8週間行い, nivolumab + ipilimumab 併用療法に計画的に切り替える群(アーム C, n =69) が比較された373 (表 19). 主要評価項目の2年生 存率は、それぞれ65% (95% CI 54~76)、73% (95% CI 62~84), 69% (95% CI 59~80) であった. 群間比 較を行う設定とされていなかったものの、探索的に解 析されたアーム A に対するアーム B およびアーム C の OS はそれぞれの群間比較にて有意差はなかった (HR 0.73, 95% CI 0.42~1.26, HR 0.81, 95% CI 0.48 ~1.37). 副次評価項目の一つである ORR (完全奏効 +部分奏効)は、それぞれ87.0%(26.1%+60.9%)、 44.9% (17.4% + 27.5%), 82.4% (30.9% + 51.5%) であっ た. Grade 3/4 の治療関連有害事象発生率は、それぞ

表20 進	行期メラノー	-マに対する東	アジアの大規模	リアルワールドデー:	タ(免疫チェックポイント阻害薬と分子標的薬の	一次投与)
記載項	試験	対象	試験名	コホート(人数)	効果	文献
10.2	後ろ向き観察研究	病期Ⅲ,Ⅳ 切除不能 未治療 BRAF 変異 陽性	B-CHECKB- RWD	BRAF 阻 害 薬 + MEK 阻害薬(236) 抗 PD-1 抗体(64) 抗 PD-1 抗体 + 抗 CTLA-4 抗体(36)	PFS 中央値 14.7 カ月, OS 中央値 34.6 カ月 RR (CR+PR) 69.1% (20.8% +48.3%) PFS 中央値 5.4 カ月, OS 中央値 37.0 カ月 RR (CR+PR) 26.6% (20.3% +6.3%) PFS 中央値 5.8 カ月, OS 中央値 NR RR (CR+PR) 27.8% (5.6% +22.2%)	(289)
(1)2)	後ろ向き観察研究	病期IV 切除不能 未治療 BRAF 変異 陽性		BRAF 阻 害 薬 + MEK 阻害薬 (32) 抗 PD-1 抗体 (40)	PFS 中央値 254日, OS 中央値 記載なし RR (CR+PR) 53.2% PFS 中央値 352日, OS 中央値 記載なし RR (CR+PR) 35.0%	(374)
PFS:無	増悪生存,OS	B:全生存期間,	NR : not reach	ed, RR (CR+PR):	奏効率(完全奏効率+部分奏効率)	

1.000 1.00

2) 東アジア人の代表的な大規模リアルワールドデータ(表 20)

ここまで紹介した欧米の逐次投与に関する臨床試験データにおいては、ICIを先行する群において2年生存率が高い傾向がみられた。一方で、東アジア人においては、非末端型メラノーマにおいても ICI の効果が乏しいことが報告されており355、東アジアにおけるエビデンスを踏まえ、東アジア人メラノーマ患者にとって最適な治療方針を検討していく必要がある。次に、BRAF遺伝子変異陽性東アジア人メラノーマの一次治療に関するリアルワールドデータを紹介する。

病期 III~IV の切除不能,未治療の BRAF^{V600E/K/R} 遺 伝子変異を有する東アジア人 (日本人) メラノーマに おける後ろ向き観察研究が、本邦26施設において実施 された289 (表 20). 336 人が評価対象とされ. 一次治療 としてBRAF/MEK 阻害薬が投与された236人,抗 PD-1 抗体が投与された64人、および nivolumab+ ipilimumab が投与された 36 人について、PFS に有意 差がみられたが (PFS 中央値: 14.7 カ月 vs 5.4 カ月 vs 5.8 カ月, P=0.003), OS に有意差はなかった (OS 中 央値:34.6 カ月 vs 37.0 カ月 vs 未到達, P=0.535). Grade 3~5もしくは投与中止となった有害事象の発 生率は、それぞれ34.7%、21.9%、および75.0%であっ た. しかし、上記の群間においては選択バイアスによ る患者背景の著しい不均一がみられることから、複数 のメラノーマ予後規定因子を傾向スコアマッチングに て調製後に生存期間解析も行われている. 患者背景調 製後の解析では、BRAF/MEK 阻害薬投与群と nivolumab + ipilimumab 投与群の 2 群間では PFS およ び OS に有意差はなかった (PFS: HR 1.78, 95% CI $0.82\sim3.88$, P=0.149, OS: HR 1.03, 95% CI $0.34\sim$ 3.14, P=0.953). 一方で、BRAF/MEK 阻害薬投与群 は抗 PD-1 抗体投与群に比べて有意に PFS を延長した が、OS での有意差はなかった (PFS: HR 1.68, 95% CI $1.09 \sim 2.59$, P = 0.018, OS : HR 1.43, 95% CI 0.83 \sim 2.45, P=0.194). また, nivolumab + ipilimumab 投与 群と抗PD-1 抗体投与群の2群間ではPFS. OSともに 有意差はなかった(HR 1.93, 95% CI 0.90~4.14, P= 0.089, OS: HR 2.40, 95% CI 0.65 \sim 8.83, P = 0.189). なお、一次治療→二次治療順として、BRAF/MEK 阻 害薬→抗PD-1 抗体 (n=60), BRAF/MEK 阻害薬 → nivolumab + ipilimumab (n = 35), 抗 PD-1 抗 体 → BRAF/MEK 阻 害 薬 (n=38), nivolumab+ ipilimumab → BRAF/MEK 阻害薬 (n = 32) を受けた 場合の OS 中央値は、それぞれ 24.3 カ月 (95% CI 8.4~ 40.3), 15.7 カ月 (95% CI 9.8~21.6), 28.8 カ月 (95% CI 17.1~40.5), 未到達であり²⁸⁹⁾, nivolumab+ ipilimumab → BRAF/MEK 阻害薬が良好な結果で あった.

病期 IV の切除不能、未治療の BRAF $^{\text{VOODE/K}}$ 遺伝子変異を有する東アジア人(韓国人)メラノーマにおける後ろ向き観察研究が、韓国 3 施設において実施された $^{374)}$ (表 20). 72 例が評価対象とされ、一次治療として抗 PD-1 抗体が投与された群(40 例)は BRAF $^{\text{MEK}}$ 阻害薬が投与された群(32 例)に比べて有意に OS を延長した(HR 2.192、95% CI 1.040 $^{\sim}$ 4.618、P=0.032). 一方、PFS では両群間に有意差はなかった(HR 1.274、95% CI 0.742 $^{\sim}$ 2.140、P=0.375). なお、有害事象については検討されなかった.

以上のように、東アジア人メラノーマに関するリア ルワールドデータについても、報告により結果に異な

21 進	=13/435.55	(10)39 010	C-3.0EX//	の臨床試験データ(免疫チェック)	ハーフー・五日来の足の区で		
記載項	試験	対象	試験名	コホート(人数)	効果	Grade3 以上の AE	瀬文
10.2	第Ⅱ相 非盲検化 ランダム化	病期Ⅲ, IV 切除不能 抗 PD-1/L1	S1616	nivolumab 1mg/kg+ipilimum- ab 3mg/kgをQ3W, 4回投与後 に, nivolumab 480mgをQ4W 投与(69)		57%	(375)
(2) 1)	比較試験	抗体投与後に 病勢進行		ipilimumab 3mg/kgをQ3W, 4回(23)	6 カ月無増悪生存率 13% RR (CR+PR) 9% (0% +9%)	35%	. (373)

表 22 進	行期メラノー	-マに対する本邦	耶の大規模	リアルワールドデータ	(抗 PD-1 抗体投与で病勢進行後の二次治療)	
記載項	試験	対象	試験名	コホート(人数)	効果	文献
	後ろ向き 観察研究	病期Ⅲ,Ⅳ 切除不能		抗 PD-1 抗 体 + 抗 CTLA-4 抗体 (23)	PFS 中央値 3.3 カ月,OS 中央値 18.9 カ月 RR(CR+PR)17%(4% +13%)	
10.2	色がないかしてい	抗 PD-1 抗		抗 CTLA-4 抗体 (36)	PFS 中央値 2.5 カ月,OS 中央値 9.7 カ月 RR(CR+PR)8%(O% +8%)	(377)
(2) 3)		体投与後に 病勢進行		BRAF 阻害薬 + MEK 阻害薬(4)	PFS 中央値 7.3 カ月,OS 中央値 8.3 カ月 RR(CR+PR)100%(25% +75%)	(077)
				化学療法(10)	PFS 中央値 4.4 カ月,OS 中央値 9.5 カ月 RR(CR+PR)O%(O% +O%)	
PFS:無	増悪生存,OS	6:全生存期間,	NR : not re	eached, RR (CR+PR)	: 奏効率(完全奏効率+部分奏効率)	

る傾向がみられていることから、前向き試験にて、 BRAF遺伝子変異陽性東アジア人メラノーマの一次治療に関するエビデンスを構築していく必要がある.

(2) 免疫チェックポイント阻害薬の逐次投与

進行期メラノーマにおいて、一次治療として抗PD-1 抗体単剤療法を選択した場合、病勢進行時の二次治療 として nivolumab + ipilimumab 併用療法および ipilimumab 単剤療法のいずれを選択すべきかが問題とな る。米国において、これらの薬物療法の薬剤投与の優 先順位を検討するランダム化比較試験が実施された。 ICI の逐次投与に関する臨床試験について紹介する.

1) 欧米における臨床試験データ(表 21)

切除不能な病期 III~IV の, 抗 PD-1/L1 抗体治療中や治療後に増悪したメラノーマを対象とした米国の非盲検化第 II 相ランダム化比較試験で, nivolumab + ipilimumab (n = 69) と ipilimumab (n = 23) の効果が比較された³⁷⁵⁾. 主要評価項目の PFS は, nivolumab + ipilimumab 群で有意に延長した (6 カ月無増悪生存率: 34% vs 13%, HR 0.63, 90% CI 0.41~0.97, P = 0.04). 副次評価項目の一つである ORR (完全奏効 + 部分奏効) は, それぞれ 28% (12% + 16%) (90% CI 19~38), 9% (0% + 9%) (90% CI 2~25) であった. 一方で, grade 3~5 の治療関連有害事象発生率は, そ

れぞれ 57% および 35% であり、ipilimumab で低い傾向であった。なお、副次評価項目の一つである OS は両群間に有意差はなかった(HR 0.83、90% CI 0.50~1.39、P=0.28) 375 .

2) 欧米の大規模リアルワールドデータデータ

欧米において実施された, 抗 PD-1 抗体投与後の逐次投与に関する後ろ向き観察研究において, nivolumab 無効後の nivolumab + ipilimumab および ipilimumab 投与後の1年生存率は, それぞれ55% (95% CI $26\sim76$) および54% (95% CI $35\sim70$), OS は, それぞれ 21% および16% であり376), 臨床試験の結果と異なる傾向がみられている.

3) 本邦の代表的な大規模リアルワールドデータ(表 22)

ここまで紹介した米国の抗 PD-1/L1 抗体投与後の 逐次投与に関する臨床試験データでは、ipilimumab と 比較し、nivolumab + ipilimumab が RFS を有意に延長 させた³⁷⁵⁾. 次に、日本人メラノーマ患者に関するリア ルワールドデータを紹介する。メラノーマの病型につ いて、本邦のメラノーマは欧米と比較し末端型、粘膜 型が5割以上を占める点で異なり⁸⁾、本邦におけるエビ デンスを踏まえ、日本人メラノーマ患者にとって最適 な治療方針を検討していく必要がある。

病期 III~IV の切除不能の日本人末端型メラノーマ における後ろ向き観察研究が、本邦24施設が参加し実 施された³⁷⁷⁾(表 22). 抗 PD-1 抗体投与中・投与後に増 悪した108例が対象となり、二次治療として nivolumab + ipilimumab (n = 23), ipilimumab (n = 36). BRAF/MEK 阻害薬 (n=4). および殺細胞性抗 がん剤 (n=10) が投与された群の効果につき検討さ れたが (BRAF/MEK 阻害薬は症例数が少ないため解 析から除外), nivolumab + ipilimumab 群と比較して ipilimumab 群, 殺細胞性抗がん剤群の ORR, RFS, OS に有意差はなかった (ORR: 17% vs 8% vs 0%, P =0.60, RFS 中央値: 3.3 カ月 vs 2.5 カ月 vs 4.4 カ月, OS 中央値: 18.9 カ月 vs 9.7 カ月 vs 9.5 カ月). 爪部メ ラノーマと手掌足底メラノーマにおけるサブグループ 解析も実施され, nivolumab + ipilimumab 群では, 爪 部メラノーマと比較し手掌足底メラノーマで OS が有 意に延長した (OS 中央値: 8.7 カ月 vs 未到達, P<= 0.001). 加えて、Cox の比例ハザードモデルによる多 変量解析の結果、爪部メラノーマは PFS および OS に 関する独立した予後不良因子であった (PFS: HR 2.79, 95% CI 1.35 \sim 5.80, P=0.006, OS: HR 3.89 95% CI 1.72~8.80, P=0.001). なお、有害事象については 検討されなかった.

10.3 おわりに

ICI+分子標的薬併用療法は,海外では薬事承認されているものの本邦では未承認であり、ドラッグ・ラグ

(海外で承認されている薬が本邦で承認されるまでに 長い年月を要すること)が生じている現状がある。併 用療法については、今後も抗 PD-1 抗体を軸とした新 規併用薬の開発が進むことが想定されることから、本 邦からも遅れることなく国際共同治験へ参加し、東ア ジア人メラノーマ患者へも, より早く, より高い有効 性と安全性が期待できる新規薬剤を届けることが重要 である. BRAF 遺伝子変異陽性メラノーマに対する ICI と分子標的薬の逐次投与については、欧米のラン ダム化比較試験で、nivolumab + ipilimumab の一次治 療としての優越性が示されたが³⁷²⁾, BRAF 遺伝子変異 陽性東アジア人メラノーマに関するリアルワールド データからは、同様の優越性は示されなかった289)。ま た, ICI の逐次投与については、米国のランダム化比 較試験において、抗PD-1/PD-L1抗体無効後の nivolumab + ipilimumab の有意な RFS 延長効果が示さ れたが375)、東アジア人メラノーマのリアルワールド データからは、同様の結果は示されなかった³⁷⁷⁾。東ア ジア人のメラノーマは欧米と比較し末端型, 粘膜型の 割合が多く⁸, 非末端型メラノーマではICIの効果が乏 しいことが報告されていることから335, 欧米主体の前 向き臨床試験の結果に基づいたエビデンスをそのまま 受け入れることには課題がある. 欧米における臨床試 験の成績を参考にしつつも、東アジア人メラノーマに 関するエビデンス構築を進め、東アジア人メラノーマ 患者における最適な治療戦略の検討を行っていくこと が重要である.

第3章 メラノーマ診療ガイドライン クリニカルクエスチョン(CQ)と推奨

CQ1 爪部浸潤性メラノーマに対する指趾切断術は勧められるか?

推奨文		
爪部浸潤性メラノーマに対して, 完全	全切除が見込める場合は指趾切断術を行	亍わないことを提案する .
推奨の強さ	エビデンスの強さ	合意率
3 (実施することを提案)	C (弱)	(2回目):90.5% (19/21)

投票結果

122111111					
	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし
	を推奨する	を提案する	とを提案する	とを推奨する	
CQ1			71.4% (15/21)		28.6% (6/21)
(1回目)				総投票数	21 名 (棄権 1 名)
CQ1			90.5% (19/21)		9.5% (2/21)
(2回目)				総投票数	21 名 (棄権 1 名)

背景・目的

遠隔転移のない爪部メラノーマの標準治療は手術療法とされ、指趾切断術と指趾骨温存術の選択に迫られる^{3.4}. しかし、指趾切断術では指欠損に伴う ADL 低下や心理面への影響も大きく、浸潤性の爪部メラノーマでも、骨浸潤を認めない例においては指趾骨温存術が選択される場合もある. とりわけ、東アジア地域では末端型メラノーマの頻度が高く治療機会も多いため、現在 JCOG(Japan Clinical Oncology Group)による指趾骨温存術に関する多施設共同研究も進行中である³⁷⁸.

前版ガイドラインでは、指趾骨温存術に対するエビデンスレベルの高い報告が少なく、明確な推奨を論じることが難しい状況から「指趾骨温存手術を実施しないことを提案する」との推奨文に至った³.しかし、この推奨文は指趾骨温存手術を否定するものではなく、誤ったメッセージとして捉えられる可能性も危惧されたことから、まずは切断術の適応や有用性を明確にしていくことが必要と考えた、切断術の適応が明確になれば、術式選択に関する臨床決断の大きな助けとなることが期待できることから、本CQに対する検討を行うこととした.

科学的根拠

遠隔転移のない爪部浸潤性メラノーマを対象 (P) とし、介入 (I) を指趾切断術 (切断) の実施、比較対照 (C) を指趾骨温存術 (末節骨直上切除による指趾骨温存拡大切除術 (非切断)) の実施とした。主要なアウトカム (O) は、無再発生存期間、局所再発率、全生存期間、無遠隔転移生存期間、quality of life、切除断端陽性率、術後合併症、コストとした。

本CQに関連した介入研究,前向きコホート研究, レジストリ報告は認めず,後ろ向き観察研究(症例集 積研究)8編を採用し検討した.各論文において,介 入群(切断群)と対照群(非切断群)の2群間の人数 や患者背景(部位,tumor thickness (TT),術式選択 など)に差を認め、メタアナリシスは困難であった. また,一部 in situ 症例を含む報告も認めたため, in situ 症例の情報を可及的に削除し,集計・検討を行っ た.

無再発生存期間と全生存期間については、病期 I/II 症例 62 例をまとめた報告で、切断群(介入群)と非切断群(対照群)に有意差は認めなかった(無再発生存期間: P=0.44、全生存期間: P=0.10)³⁷⁹.

局所再発については、各報告の間で大きな差はなく、

数例に限られていた. 局所再発を評価している論文について集計できる数をまとめると, 非切断群では72例中4例(5.6%)に, 切断群では269例中3例(1.1%)に局所再発を認めた4.379~381).

一方,局所再発と遠隔転移を合計して集計を行ったところ,非切断群 59 例中 26 例 (44.1%)で,切断群 161 例中 77 例 (47.8%)で再発を認めた.再発 (局所再発・領域内再発・原病死を含める)と遠隔転移 (遠隔転移と原病死を含める)を多変量解析で検討した論文が 1 編のみあり 98),性別と TT を調整した調整後ハザード比 (adjusted hazard ratio: aHR)で,切断に対する非切断の有意な aHR の増加はなかった (再発: aHR 1.67,95%信頼区間 0.74~3.77,遠隔転移:aHR0.45,95%信頼区間 0.16~1.28).その他の採用論文のデータでは,遠隔転移も含めた再発について検討されていると思われるものもあり,その評価は困難であった 98.379).

無遠隔転移生存期間, quality of life, 切除断端陽性率, 術後合併症, コストについては介入群と対照群で比較した研究はなかった.

解説

爪部浸潤性メラノーマに対し、前版ガイドラインで介入とした指趾骨温存術(非切断)を今回は対照として扱った.これを指趾切断術(切断)と比較した場合の主要アウトカムにつき検討を行った.8編の後ろ向き観察研究を採用したが、対象集団の患者背景には大きなばらつきがあり、術式についても、切断群と非切断群のどちらかを主とした報告が5編、両術式を同程度のサンプルサイズで比較した報告は2編に留まった.切断術の施行が局所再発率の低下や無再発生存期間・全生存期間の延長に寄与すれば、その意義は大きく、術式としてもより簡便といえる.しかし、今回の検討では、切断術が非切断術と比較して、局所再発率を低下させているとは言えず、無再発生存期間、全生存期間を有意に延長した報告もなかった.

上記の結果に加えて、無再発生存期間や全生存期間は、術式の差異より、原発巣の TT や浸潤程度、病期が影響すると結論付ける報告も複数あった^{380,381}ことが共有された。また、指趾喪失に伴う生活面・精神面での代償は大きく、切断術の非切断術に対する優位性が明らかでなければ、指趾切断術は過剰な介入であり避けることが望ましいと考えられた。ただし、全ての爪部浸潤性メラノーマで切断術を回避すべきではなく、あくまで非切断術により完全切除が見込める症例にの

み適応となり得る. 腫瘍の骨浸潤を伴う症例について は従来通り指趾切断術が適応となる. また. 非切断術 により病理組織学的断端陰性が確保できると術前に適 切に判断するためには、一定数の非切断術の臨床経験 も必要であると考えられる. Oh らは、TT 0.8 mm 未 満を非切断術の適応としており98), NCCN ガイドライ ンでも同様の見解が示されている. また. 指趾骨温存 術の施行には、病変を露出させずに末節骨骨膜下で切 除する熟練した手術手技も必要で、手技の標準化や習 熟度も本術式を適用するにあたっての検討事項と考え られる. パネル会議では上記の内容を議論したが. 前 版ガイドラインと同様にエビデンス総体の強さが充分 でないことが懸念され、1回目の投票では、「介入しな いことを弱く推奨」に投票が多かった(71.4%)ものの 推奨の方向を決定する基準には至らなかった、投票後 改めて議論したところ, 非切断術の適応や条件を推奨 文に盛り込むことが提案された.「完全切除が見込める 場合」との文言を推奨文に追加する方針で2回目の投 票を行ったところ,「介入しないことを弱く推奨」する に委員の80%以上(90.5%)が投票した結果となり推 奨が決定した.

臨床に用いる際の注意点

手術手技に関する8編の後ろ向き観察研究での検討であり、強いエビデンスレベル総体より決定した推奨ではない。また、非切断術後に深部断端陽性となった場合には切断術への移行を要し手術回数増加や治療期間延長を生じる可能性もある。高い完全切除率と良好

な術後経過を得るには、病変浸潤の術前評価や手術手 技への習熟といった経験的な要素も含まれ、指趾骨温 存術を適応する場合には、術式や治療への熟練が必要 不可欠になる.

今後の研究の可能性

爪部浸潤性メラノーマに対する術式選択を明確にするためには、より高いエビデンスとなる前向き研究が必要である.現在本邦にて、「遠隔転移および指趾骨浸潤を有さない爪部悪性黒色腫患者に対する指趾骨温存切除の有効性と安全性を検証する試験」(JCOG1602)が実施され、主要評価項目として無再発生存期間(局所再発を除く)が設定されている378). 2030 年に集計・解析予定とされるが、このような前向き研究の結果に伴い、より明確な推奨決定に近づくことができるのではないかと思われる. また、非切断術を実施した症例に対する前向きレジストリとの比較も有用と思われる. 将来的にはこのような試験が東アジアにおける多施設国際共同臨床試験に発展すれば、より強固なエビデンスを構築することも可能と思われ、その体制作りも今後の課題と考えられる.

加えて、メラノーマへの術前補助療法の発展に伴い、より低侵襲な手術療法が実現しうる時代を迎えることが予想される. 爪部浸潤性メラノーマに対する完全切除をどの様な形で実現するかについて、非切断術の術式標準化も含め、継続的な取り組みが必要と考えられる.

文献検索式と文献選択

	·· ·
タイトル	手術療法
CQ1	爪部浸潤性メラノーマに対する指趾切断術は勧められるか?
データベース	PubMed,The Cochrane Library(CCSR,CCRCT),医学中央雑誌

[PubMed]

#	検索式	文献数
1	((("Melanoma/surgery" [Mesh] OR ("Melanoma/therapy" [Mesh] AND "Amputation, Surgical" [Mesh])) AND "Nail Diseases" [Mesh]) OR (melanoma* [TI] AND (subungual [TI] OR nail [TI] OR acral [TI]) AND (amputati* [TI] OR surg* [TI] OR excision* [TI]))) AND 1968: 2023 [DP] NOT "Case Reports" [PT]	110

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti AND (subungual: ti OR nail: ti, ab, kw OR acral: ti) AND (amputati*: ti OR	4
1	surg*: ti OR excision*: ti)	4

[医学中央雑誌]

#	検索式	文献数
1	((("黒色腫"/TH) and (SH=外科的療法,治療) and "肢切断術"/TH and ("爪疾患"/TH or "爪"/TH)) or ((メラノーマ/TA or 黒色腫/TA) and 爪/TA and (切断/TI or 外科/TI or 手術/TI))) and (PT=症例報告・事例除く)	

CQ2 センチネルリンパ節(SLN)転移陽性例に対して早期リンパ節郭清を行うことは勧められるか?

推奨文			
SLN 転移陽性例に対して早期リンパ節郭清を実施しないことを提案する.			
推奨の強さ	エビデンスの強さ	合意率	
3 (実施しないことを提案)	C (弱い)	(1回目):85.0% (17/20)	

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし	
	を推奨する	を提案する	とを提案する	とを推奨する		
CQ2			85.0% (17/20)	15.0% (3/20)		
(1回目)				総投票数	20 名(棄権	0名)

背景・目的

臨床的に明らかな領域リンパ節転移がなく、かつ遠 隔転移のない浸潤性メラノーマに対して、SLN 生検が 勧められており、SLN への転移の有無は、病期決定、 予後予測の重要な因子となる. しかし、SLN 転移陽性 者に領域リンパ節郭清を行った場合、SLN 以外のリン パ節に転移がないことや、郭清術を行っても依然とし て血行性転移をきたしやすい背景から, SLN 転移陽性 例に早期リンパ節郭清術を行う意義についてはかねて より議論があった. 近年, SLN 転移陽性例を対象に早 期リンパ節郭清を実施した群と、経過観察とし臨床的 にリンパ節転移が確認されてからリンパ節郭清を実施 した群とを比較した2つの第 III 相ランダム化比較試 験が海外から報告され、早期リンパ節郭清を実施する ことで生存期間が延長するというエビデンスが得られ なかった59,113). ただし、これらのランダム化比較試験 はいずれも本邦とは患者背景が異なるため、欧米のエ ビデンスだけでなく本邦を含む東アジア人についての 研究成果をふまえて再検討すべき課題である.よって. 本CQでは、東アジア人における SLN 転移陽性例に対 する早期リンパ節郭清の有効性を評価することを目的 とする.

科学的根拠

東アジアの SLN 転移陽性の皮膚メラノーマを対象 (P) とし、介入 (I) を早期リンパ節郭清の実施、比較対照 (C) については早期リンパ節郭清を行わずに経過観察もしくは術後補助療法の実施とした。主要なア

ウトカム (O) は、全生存期間 (overall survival: OS), 無再発生存期間 (relapse-free survival: RFS), 局所再発率、術後合併症、quality of life、コストとした

東アジア領域において、前述のPICOの介入と対照の2群でランダム化比較試験を行った試験は調べた限り見当たらず、3編の後ろ向き観察研究^{120~122)}が抽出された.

OS, RFS については、本邦の後ろ向き観察研究では、対照群では介入群より OS が有意に延長し (OS 中央値:未到達 vs 95.0 カ月、P=0.02)、RFS は両群間に有意差はなかった $(P=0.63)^{120}$ 、本 CQ のアウトカムには含んでいないものの、OS の代理アウトカムとして適用しうる疾患特異的生存期間については台湾の後ろ向き観察研究にて、介入群が対照群より有意に延長した $(88.5\pm6.3\% \text{ vs } 33.3\pm25.5\%$ 、ハザード比 0.2、95% 信頼区間 $0.04\sim0.7$; P=0.004) 122 、中国の後ろ向き観察研究では、介入群、対照群間の RFS に有意差は認められなかった (RFS 中央値: 31 カ月 vs 36 カ月、P=0.184) 121 .

局所再発率、術後合併症、quality of life、コストについて、早期リンパ節郭清実施群と経過観察群とを比較した東アジア領域の研究はなかった。

解説

前版ガイドラインでは SLN 転移陽性例に対する早期リンパ節郭清を行わないことが提案された. しかしこの推奨は東アジア領域を含まない海外の 2編のラン

ダム化比較試験が元になっている. 東アジア人のメラ ノーマはリンパ流が予測しやすい末端型メラノーマの 割合が高く、複数のリンパ流が想定される体幹のメラ ノーマと比較すると SLN 転移陽性例に対する早期リ ンパ節郭清が有効である可能性が考えられることよ り、海外の臨床試験のデータをそのまま本邦に適用し てよいかどうかが疑問である. そのため、本CQでは 欧米のランダム化比較試験はいずれも非直接性が高い と判断し、東アジアからの単群試験や観察研究も含め て文献スクリーニングを行った. 東アジア領域から報 告された3編の後ろ向き観察研究のうち、早期リンパ 節郭清により疾患特異的生存率が上昇したという報告 が1編あったが、症例数が介入群27例、対照群6例と 少なく信頼性は低いと考えた. 逆に本邦からの報告で は OS が対照群で有意に延長し、中国からの報告では 両群間のRFSに有意差は認められなかった. パネル会 議でもこれらの結果からは、海外で実施された2編の ランダム化比較試験の結果を覆すだけのエビデンスは 得られないとの結論に至り、前版のガイドラインと同 様に早期リンパ節郭清を実施しないことを提案する投票結果となった.

臨床に用いる際の注意点

本 CQ の推奨は欧米のランダム化比較試験と本邦後 ろ向き観察研究の解析結果の総合的な判断によるもの であるが、欧米のランダム化比較試験は非直接性の問題があり、観察研究はバイアスリスクが高いため、エビデンスは強くないことに注意が必要である.

今後の研究の可能性

今回の文献検索では、東アジアからは後ろ向き観察研究しか採用できなかった。東アジア人種におけるSLN 転移陽性例に対する早期リンパ節郭清の有効性に関してはランダム化比較試験で再検証される必要がある。しかしながら、海外では高いエビデンスレベルをもって早期リンパ節郭清の有効性が認められていないこと、SLN 転移陽性例に対しては術後補助療法の実施が標準化してきていること等より、今後のランダム化比較試験の実施は困難であると考える。

文献検索式と文献選択

タイトル	手術療法
CQ2	センチネルリンパ節 (SLN) 転移陽性例に対して早期リンパ節郭清を行うことは勧められるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌

[PubMed]

#	検索式	文献数
1	((("Melanoma/surgery" [Mesh] OR ("Melanoma/therapy" [Mesh] AND "Lymph Node Excision" [Mesh])) AND "Lymphatic Metastasis" [Mesh] AND "Sentinel Lymph Node" [Mesh]) OR (melanoma* [TI] AND sentinel [TI] AND (node* [TI] OR nodal [TI]) AND	471
	metasta* [TIAB] AND (lymphadenectom* [TIAB] OR "lymph node dissection" [TIAB] OR "lymph node excision" [TIAB]))) AND 1968: 2023 [DP] NOT "Case Reports" [PT]	

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti AND sentinel: ti AND (node*: ti OR nodal: ti) AND metasta*: ti AND (lymphadenectom*: ti, ab, kw OR "lymph node dissection": ti, ab, kw OR "lymph node excision": ti, ab, kw)	

[医学中央雑誌]

#	検索式	文献数
1	((("黒色腫"/TH) and (SH=外科的療法,治療) "リンパ行性転移"/TH and "センチネルリンパ節"/TH and "リンパ節切除"/TH) or ((メラノーマ/TA or 黒色腫/TA) and (リンパ節/TA or SLN/TA) and 転移/TA and (郭清/TI or 外科/TI or 手術/TI or 切除/TI))) and (PT=症例報告・事例除く)	88

CQ3 根治切除後の BRAF 変異陰性メラノーマに対する術後補助療法として抗 PD-1 抗体は勧められるか?

推奨文

根治切除後の術後病期 IIB~IV の BRAF 変異陰性メラノーマに対して、抗 PD-1 抗体を用いた 1 年間の術後補助療法を行うことを提案する.

推奨の強さ	エビデンスの強さ	合意率	
2 (実施することを提案)	C (弱)	(1回目):54.5% (12/22)	

投票結果

	1. 「実施する」こと を推奨する		3. 「実施しない」こ とを提案する	4. 「実施しない」こ とを推奨する	5. 推奨なし	
CQ3	45.5% (10/22)	54.5% (12/22)				
(1回目)				総投票数	22 名(棄権	0名)

背景・目的

本邦において、複数のランダム化比較試験 (randomized control trial: RCT) (CheckMate 238²³⁹⁾, KEY-NOTE-054²⁴²⁾, KEYNOTE-716²⁴⁷⁾) の結果に基づき, 根治切除後の病期 IIB/C、III、IV のメラノーマに対 し、抗 PD-1 抗体による 1 年間の術後補助療法が薬事 承認されている. NCCN ガイドライン33 においても, BRAF 変異の有無に関わらず、根治切除後の病期 IIB/ C, III, IV のメラノーマに対し, 抗 PD-1 抗体による 1年間の術後補助療法が推奨されている. しかしなが ら、そのエビデンスとなったこれら RCT は白人を主 体に行われた国際共同/欧米の臨床試験である. 進行期 メラノーマに関するリアルワールドデータにおいて, 欧米のメラノーマと比較し、本邦を含む東アジア人の メラノーマは免疫チェックポイント阻害薬の効果が乏 しいことが報告されていることから333,335), 白人主体の RCT の結果のみに基づいた推奨が、東アジアの根治切 除後の BRAF 変異陰性メラノーマにおいては適用さ れない可能性が示唆される. よって, 東アジアにおけ るエビデンスを踏まえた東アジア人に対する推奨を検 討することが重要である.

科学的根拠

東アジア人の根治切除後のBRAF変異陰性メラノーマを対象(P)とし、介入(I)を抗PD-1 抗体による術後補助療法、対照(C)を経過観察とし、主要なアウトカム(O)として全生存期間(overall survival:OS)、無再発生存期間(relapse-free survival:RFS)、有害事象、コスト、quality of lifeを設定し検討した。

文献検索およびスクリーニングの結果,本 CQ に関連する,根治切除後のBRAF 変異陰性メラノーマに対する抗 PD-1 抗体の効果について,サブグループ解析

が実施された 5 編の論文を採用した $^{239,240,242,382,383)}$. 3 編が RCT で、いずれも白人を主体とした国際共同/欧米の臨床試験であった(CheckMate 238^{239} 、CheckMate $76K^{240}$ 、KEYNOTE- 054^{242}). 2 編が東アジア人(中国人)を対象としたコホート研究であった 382,383 .

RFS については、RCT 3編のうち、プラセボを対照とした 2編の RCT を用いたメタアナリシスにおいて、プラセボ群に対する抗 PD-1 抗体群の RFS は有意に延長した(ハザード比(hazard ratio:HR) 0.47, 95% 信頼区間(confidence interval:CI) $0.24\sim0.89$, P= 0.03)。 2編のコホート研究においても、対照群に対し抗 PD-1 抗体群で RFS の延長効果がみられた(次項「解説」を参照).

有害事象については、BRAF変異陰性例では未報告であるため、上記 RCT における全集団について検討した。CheckMate $76K^{240}$ において、最終投与後 30 日以内の grade3/4の治療関連有害事象発生率はnivolumab群 14.7%、プラセボ群 2.7%、治療中止に至った有害事象はnivolumab群 14.7%、プラセボ群 2.7%であり、治療関連死はnivolumab群で 1 例 (0.2%) にみられた。KEYNOTE- 054^{242} において、grade3以上の治療関連有害事象発生率はpembrolizumab群 14.5%、プラセボ群 3.4%、治療中止に至った有害事象はpembrolizumab群 14.1%、プラセボ群 2.2%であり、治療関連死はpembrolizumab群 14.1%、プラセボ群 2.2%であり、治療関連死はpembrolizumab群 14.1%、プラセボ群 2.2%であり、治療関連死はpembrolizumab群 14.1%、プラセボ群 2.2% であり、治療関連死はpembrolizumab群 14.1%、プラセボ群 2.2% であり、治療関連死

OS については、BRAF 陰性例および全集団のいずれもプラセボを対照とした2編のRCT 240,242 では未報告であり、評価できなかった。

コスト, Quality of life については, 抗 PD-1 抗体群 と経過観察群を比較検討した研究はなかった.

解説

RCT 3編について、CheckMate 238は術後病期

IIIB/C, IV (AJCC 第7版) を対象とし、ipilimumab が対照とされた²³⁹. CheckMate 76K は術後病期 IIB/C (AJCC 第8版) を対象とし、プラセボが対照とされた²⁴⁰. KEYNOTE-054 は術後病期 IIIA/B/C (AJCC 第7版) を対象とし、プラセボが対照とされた²⁴².

上記 RCT3 編における BRAF 陰性例に着目すると、病期 IIB/C, III, IV で各試験の対照群に比較して抗PD-1 抗体群で有意に RFS の延長がみられた(Check-Mate 238: HR 0.69, 95% CI 0.53~0.91, CheckMate 76K: HR 0.33, 95% CI 0.21~0.53, KEYNOTE-054: HR 0.64, 95% CI 0.44~0.92). また、上記 RCT のうちplacebo を対照とした 2 編^{240,242)}につきメタアナリシスを実施したところ、プラセボに比較して抗 PD-1 抗体で有意に RFS が延長した(HR 0.47, 95% CI 0.24~0.89、P=0.03).

OS については、ipilimumab を対照とした Check-Mate 238^{239} では、nivolumab 群の有意な OS 延長はなかったが(HR 0.87、95% CI $0.66\sim1.14$ 、P=0.31)、nivolumab 群の有意な RFS 延長はみられた(HR 0.72、95% CI $0.60\sim0.86$ 、P=0.0003)状況を踏まえると、必ずしも RFS が OS の代理アウトカムとならない可能性が示唆される。

術後補助療法の真の評価項目と考えられる OS については、抗 PD-1 抗体効果を評価するためにプラセボを対照とした 2 編の RCT の結果が待たれる. しかしながら BRAF 変異陰性のメラノーマにおいては再発時の治療選択肢が限られていることに加え、パネル会議では参加いただいた患者会の方より、患者にとってRFS の延長と OS の延長は同等に重要であるとの意見があったことを踏まえ、RFS の結果に基づいて本 CQにおける抗 PD-1 抗体投与の益に関する評価を行うことは妥当と考えた.

他方、東アジア人の病期 III のメラノーマを対象とした 2 編のコホート研究について^{382,383)}, Li らの報告では、BRAF 陰性の皮膚メラノーマ(54 例)において、抗 PD-1 抗体群は対照群(高用量 interferon(IFN))に比較して RFS の延長傾向はみられたが有意差はなかった(HR 0.411、95% CI 0.119~1.422)³⁸²⁾. Sun らの報告では、BRAF 陰性の末端型メラノーマおよび非末端型メラノーマ(85 例)において、抗 PD-1 抗体群は対照群(高用量 IFN または経過観察)と比べて RFSとほぼ同義である無病生存期間(disease-free survival:DFS)が有意に延長した(DFS 中央値:32 カ月 vs 9 カ月、P=0.003)³⁸³⁾. コホート研究ではあるが、

東アジア人病期 III のメラノーマにおいても RCT と同様に, 抗 PD-1 抗体投与で RFS の延長傾向がみられている.

有害事象については、採用した3編のRCTに加え、Linらの後ろ向きコホート研究³⁸²⁾において、grade 3/4の治療関連有害事象発生率は抗PD-1 抗体群13.3%、high dose IFN群30.0%であり、抗PD-1 抗体群における治療中止に至った有害事象や死亡はなかった。以上より、パネル会議でもコホート研究における抗PD-1投与群のgrade3以上の治療関連有害事象の発生率はRCTと同程度であり、治療中止に至った有害事象および治療関連死は認められなかったことから、東アジア人においても、抗PD-1 抗体投与における有害事象は許容できるとの見解に至った。

以上の結果、パネル会議でも効果のバランスは「おそらく介入が優れている」と判断する意見が大半を占めたが、投票結果は介入することを強く推奨:10/22 (45.5%)、介入することを弱く推奨:12/22 (54.5%)と、推奨の強弱で意見が分かれた。「強い」推奨に80%以上の票は集中しなかったが、80%以上の票が「介入すること」の方向に集中したことより、介入の「弱い」推奨となった。

なお、RCT 3編はいずれも白人を主体に行われた試験であること、1編における対照群が異なること等の点で非直接性に問題があると考えられる。また、2編の東アジア人を対象としたコホート研究については、リアルワールドデータであるため選択バイアス等のバイアスリスクが高いことや、対象が病期 III のみに限られること、対照群が異なること等の点で非直接性に問題がある。よって、本 CQ における全体的なエビデンスの確実性は「弱」と判断する。

臨床に用いる際の注意点

採用したRCTのうち、病期IIIAも対象とされた KEYNOTE-054において、臨床試験に組み入れられた のはセンチネルリンパ節転移巣の腫瘍量が1 mm 超の 患者のみであり、1 mm 以下の病期 IIIA 患者に対する 抗 PD-1 抗体を用いた術後補助療法の有用性は不明で あることに留意が必要である. また、現時点において、 病期 IIB/C の東アジア人メラノーマの術後補助療法に 関する研究はないことにも留意が必要である. なお、 本邦において nivolumab および pembrolizumab が術 後補助療法として薬事承認されており、各病期におけ る抗 PD-1 抗体の選択においては、添付文書および最 適使用推進ガイドラインを熟知する必要がある.

今後の研究の可能性

今回採用した RCT はいずれも白人を主体に行われたものであり、東アジア人の根治切除後の BRAF 変異

陰性メラノーマに対する抗 PD-1 抗体の有用性について、東アジア人においても本 CQ を検証するための RCT が必要と考える.

文献検索式と文献選択

タイトル	根治切除後の BRAF 変異陰性メラノーマ
CQ3	根治切除後の BRAF 変異陰性メラノーマに対する術後補助療法として抗 PD-1 抗体は勧められるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌

[PubMed]

#	検索式	文献数
1	Melanoma/SU [MH] OR "advanced melanoma" [TI: ~5] OR "high risk melanoma" [TI: ~5]	13,500
2	(Melanoma [MH] OR melanoma* [TI]) AND (resect* [TIAB] OR surg* [TIAB] OR	19,043
	operat* [TIAB] OR postoperat* [TIAB] OR excis* [TIAB] OR dissect* [TIAB])	19,045
3	"Adjuvants, Immunologic" [MH] OR "Chemotherapy, Adjuvant" [MH] OR adjuvant* [TIAB]	233,129
4	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti	2,4284
	PD1" [TI] OR "anti PD 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	2,4204
5	(#1 OR #2) AND #3 AND #4	223
6	#5 NOT "Case Reports" [PT]	185

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti	4,199
2	(resect* OR surg* OR operat* OR postoperat* OR excis* OR dissect*): ti, ab	346,325
3	adjuvant*: ti, ab	35,305
	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*)	
4	OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembroli-	6,455
	zumab): ti, ab	
5	#1 AND #2 AND #3 AND #4	170
6	#5 CDSR	1
7	#5 CCRCT	169

[医学中央雑誌]

#	検索式	文献数
1	黒色腫;外科的療法/TH or 進行メラノーマ/TA or 進行期メラノーマ/TA or 進行期黒色腫/TA or 進行黒色腫/TA or 進行悪性黒色腫/TA or 進行期悪性黒色腫/TA	5,014
2	(黒色腫/TA or メラノーマ/TA or 黒色がん/TA or 黒色ガン/TA or 黒色癌/TA or 黒色肉腫/TA) and (手術/TA or 外科/TA or 術後/TA or 郭清/TA or 廓清/TA or 切除/TA or 摘出/TA)	4,069
3	免疫アジュバント/TH or アジュバント化学療法/TH or アジュバント/TA or 術後化学療法/TA or 切除後補助/TA or 術後補助/TA	83,432
4	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	19,147
5	(#1 or #2) and #3 and #4	188
6	#5 and PT=会議録除く and PT=症例報告・事例除く	40

CQ4 根治切除後の BRAF 変異陽性メラノーマに対する術後補助療法は BRAF/MEK 阻害薬と抗 PD-1 抗体のいずれが勧められるか?

推奨文

根治切除後の BRAF 変異陽性メラノーマに対する術後補助療法は、BRAF/MEK 阻害薬と抗 PD-1 抗体を同程度に提案する.

推奨の強さ	エビデンスの強さ	合意率
5 (推奨なし)	C (弱)	(3 回目):86.4% (19/22)

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施	しない」こ	5. 推奨なし
	を推奨する	を提案する	とを提案する	とを推奨	する	
CQ4		56.5% (13/23)				43.5% (10/23)
(1回目)					総投票数	23 名 (棄権 0 名)
CQ4		17.4% (4/23)				82.6% (19/23)
(2回目)					総投票数	23 名 (棄権 0 名)
CQ4		13.6% (3/22)				86.4% (19/22)
(3回目)			総	:投票数	22 名(棄権	0名, 退室 1名)

背景・目的

BRAF V600 変異が認められた場合,病期 III については nivolumab または pembrolizumab の抗 PD-1 抗体と dabrafenib + trametinib の BRAF/MEK 阻害薬の両者を用いることができる. 臨床現場ではいずれの治療を選択すべきかという判断が困難であり、科学的根拠をもとに適切に選択する必要がある.

科学的根拠

根治切除後のBRAF変異陽性メラノーマを対象 (P) とし、介入 (I) を BRAF/MEK 阻害薬による術後補助療法、比較対照 (C) を抗 PD-1 抗体による術後補助療法とした。主要なアウトカム (O) は、全生存期間、無再発生存期間、有害事象、コスト、quality of life とした.

文献検索の結果, BRAF 変異陽性メラノーマに対する術後補助療法としての BRAF/MEK 阻害薬と抗PD-1 抗体の間の全生存期間, 無再発生存期間を直接比較したランダム化比較試験 (randomized control trial: RCT) はなかった. スクリーニングの結果, 2編の RCT (BRAF/MEK 阻害薬とプラセボを比較したCOMBI-AD²³⁰⁾と抗 PD-1 抗体とプラセボを比較したKEYNOTE-054²⁴²⁾)を用いたネットワークメタアナリシスと³⁸⁴⁾,後ろ向き研究 2編^{250,251)}を検討した. いずれも参加者の大部分は白人であった.

無再発生存期間については、前者のネットワークメ タアナリシスでは、抗PD-1 抗体に対する BRAF/MEK 阻害薬のハザード比 (95% 信頼区間) は 0.90 (0.59~ 1.38) とほぼ同等で、有意差はなかった。後ろ向き研究2編では、BRAF/MEK 阻害薬が優れる結果であったものの、選択バイアスの影響が否定できず、エビデンスとしては弱いと考えられる。また、抗 PD-1 抗体は術後補助療法中の再発が多く、BRAF/MEK 阻害薬は術後補助療法終了後の再発が多い傾向があることから、観察期間が短い場合の結果の解釈は慎重に行う必要がある。白人を対象とした場合に両者の有効性の差は小さいと考えられるものの、東アジア人を対象とした場合の効果差は不明である。

有害事象については、2編のRCTにおける有害事象の内訳をみると、抗PD-1 抗体(KEYNOTE-054)では grade 3以上の治療関連有害事象発生率が15%、毒性中止が14%、治療関連死が0.2%(筋炎1例)、内分泌関連の免疫関連有害事象が23%に生じ、BRAF/MEK 阻害薬(COMBI-AD)では grade 3以上の治療関連有害事象発生率が41%、毒性中止26%、死亡0.2%(肺炎1例、治療関連死はなし)、grade 1以上の発熱が63%で生じた.

全生存期間については、KEYNOTE-054で全生存期間が報告されていないことからネットワークメタアナリシスには含まれておらず、後ろ向き研究2編でも両者に有意差を認めなかった。

コスト, quality of life については, 両者を比較した 研究はなく, 評価できなかった.

解訪

これまでに抗 PD-1 抗体と BRAF/MEK 阻害薬を用

いた術後補助療法を直接比較した臨床試験は行われて いない. 直接比較はできないものの、同じ病期 III を 対象とした異なる第 III 相 RCT の試験治療群の3年 RFS に着目すると、pembrolizumab(KEYNOTE-054 の BRAF 陽性サブグループ) では 62%²⁴²⁾, dabrafenib + trametinib (COMBI-AD) では 59%²³⁰⁾であるが、参 加者のほとんどは白人である. 一方, 本邦からも参加 した国際多施設共同後ろ向き研究では、BRAF/MEK 阻害薬の抗PD-1 抗体に対する RFS のハザード比 (95%) 信頼区間)は、白人で0.73(0.55~1.00)に対し、アジ ア人では $0.40(0.18\sim0.87)$ であり 261 、アジア人では BRAF/MEK 阻害薬が有望である可能性がある. しか しながら、パネル会議では、1回目の投票で介入する ことを弱く推奨:13/23 (56.5%), 推奨なし:10/23 (43.5%) と意見が分かれた. これまでに直接比較が行 われたことがないこと、臨床試験のメタアナリシスで は両者の有効性に明らかな差がみられなかったこと. 後ろ向き研究における選択バイアスについて議論した 結果,2回目の投票では介入することを弱く推奨:4/23 (17.4%). 推奨なし:19/23 (82.6%). 1 名退室後の3 回目の投票では介入することを弱く推奨:3/22 (13.6%), 推奨なし:19/22(86.4%)となり、現時点で は東アジア人であるというだけで BRAF/MEK 阻害 薬を推奨するエビデンスは不十分であり、推奨なしと の結論に至った.

病期 IIB, 病期 IIC の予後は病期 IIIA よりも悪く, 病期 III 同様に術後補助療法の開発が行われている. これまでに, pembrolizumab とプラセボを比較した第 III 相 RCT (KEYNOTE-716)²⁴⁹と nivolumab とプラセ

ボを比較した第 III 相 RCT (CheckMate 76K)²⁴⁰が行われており、いずれも抗 PD-1 抗体の RFS が有意に延長した.本邦からは KEYNOTE-716 のみに参加している。これまでに病期 IIB~IIC を対象に dabrafenib + trametinib を用いた術後補助療法の臨床試験は行われておらず、CQ4 の検討に病期 IIB/IIC は含まれていない

臨床に用いる際の注意点

有害事象は抗 PD-1 抗体と BRAF/MEK 阻害薬の毒性プロファイルが異なるため、一概に比較することは 困難である。抗 PD-1 抗体は点滴薬で、grade 3 以上の 有害事象の発生頻度は高くない一方で、甲状腺機能低下症や副腎不全といったホルモン補充療法を一生涯要する永続的な免疫関連有害事象が生じうる。一方、dabrafenib+trametinib は内服薬で、永続的な有害事象はほぼみられないものの、発熱をはじめとした有害事象発生率は比較的高い。現時点では、投与経路や有害事象について患者に十分説明した上で、患者の価値観に基づいて治療を選択することが望ましいと考えられる。なお、病期 IIB~IIC の場合は、本邦の実臨床では pembrolizumab のみが術後補助療法の選択肢となる。

今後の研究の可能性

東アジア人を対象としたエビデンスの確立が望まれる。 病期 IIB~IIC については BRAF/MEK 阻害薬のエビデンスが存在しないため、今後検討されるべきである。今後は東アジア人を対象に、病期 IIB~IIC も含め、BRAF/MEK 阻害薬と抗 PD-1 抗体の術後補助療法としての効果を比較する RCT の施行が望まれる。

文献検索式と文献選択

タイトル	根治切除後の BRAF 変異陽性メラノーマ
1(()/1	根治切除後のBRAF変異陽性メラノーマに対する術後補助療法はBRAF/MEK阻害薬と抗PD-1 抗体のいずれが勧められるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌

[PubMed]

#	検索式	文献数		
1	Melanoma/SU [MH] OR "advanced melanoma" [TI: ~5] OR "high risk melanoma" [TI: ~5]	13,500		
9	(Melanoma [MH] OR melanoma* [TI]) AND (resect* [TIAB] OR surg* [TIAB] OR	19,043		
	operat* [TIAB] OR postoperat* [TIAB] OR excis* [TIAB] OR dissect* [TIAB])	19,043		
3	"Adjuvants, Immunologic" [MH] OR "Chemotherapy, Adjuvant" [MH] OR adjuvant* [TIAB]	233,129		
	("Proto-Oncogene Proteins B-raf" [MH] AND "Mitogen-Activated Protein Kinase Kinases"			
4	[MH]) OR (dabrafenib [NM] AND trametinib [NM]) OR (encorafenib [NM] AND bin-	1,417		
	imetinib [NM]) OR (Vemurafenib [MH] AND cobimetinib [NM])			
_	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti	24,284		
5	PD1" [TI] OR "anti PD 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	44,484		
6	(#1 OR #2) AND #3 AND (#4 OR #5)	253		

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti	4,199
2	(resect* OR surg* OR operat* OR postoperat* OR excis* OR dissect*): ti, ab	346,325
3	adjuvant*: ti, ab	35,305
4	(((BRAF OR BRAFi OR BRAFis) AND (MEK OR MEKi OR MEKis)) OR (dabrafenib AND	566
4	trametinib) OR (encorafenib AND binimetinib) OR (Vemurafenib AND cobimetinib)): ti, ab	300
	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*)	
5	OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembroli-	6,455
	zumab): ti, ab	
6	#1 AND #2 AND #3 AND (#4 OR #5)	203
7	#6 CDSR	1
8	#6 CCRCT	202

[医学中央雑誌]

#	検索式	文献数
1	黒色腫:外科的療法/TH or 進行メラノーマ/TA or 進行期メラノーマ/TA or 進行期黒色腫/TA or 進行黒色腫/TA or 進行悪性黒色腫/TA or 進行期悪性黒色腫/TA	5,014
2	(黒色腫/TA or メラノーマ/TA or 黒色がん/TA or 黒色ガン/TA or 黒色癌/TA or 黒色肉腫/TA) and (手術/TA or 外科/TA or 術後/TA or 郭清/TA or 廓清/TA or 切除/TA or 摘出/TA)	4,069
3	免疫アジュバント/TH or アジュバント化学療法/TH or アジュバント/TA or 術後化学療法/TA or 切除後補助/TA or 術後補助/TA	83,432
4	(B-raf 癌原遺伝子タンパク質/TH and "MAP Kinase Kinases"/TH) or ((Encorafenib/TH or encorafenib/TA or encorafenib/TA) and (Binimetinib/TH or binimetinib/TA or binimetinib/TA)) or ((Dabrafenib/TH or dabrafenib/TA or dabrafenib/TA) and (Trametinib/TH or trametinib/TA or trametinib/TA)) or ((Vemurafenib/TH or vemurafenib/TA or vemurafenib/TA) and (Cobimetinib/TH or cobimetinib/TA or コビメチニブ/AL))	747
5	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	
6	(#1 or #2) and #3 and (#4 or #5)	
7	#6 and PT = 会議録除く	101

CQ5 臨床的に明らかな領域リンパ節転移を有するメラノーマに対して術前補助療法は勧められるか?

连奨文				
臨床的に明らかな領域リンパ節転移を有するメラノーマに対して術前補助療法を臨床試験の範囲で提案する.				
推奨の強さ	エビデンスの強さ	合意率		
2 (実施することを提案)	D (とても弱い)	(2回目):89.5% (17/19)		

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし
	を推奨する	を提案する	とを提案する	とを推奨する	
CQ5		14/19 (73.7%)			5/19 (26.3%)
(1回目)				総投票数	19名 (棄権 0名)
CQ5		17/19 (89.5%)			2/19 (10.5%)
(2回目)				総投票数	19 名 (棄権 0 名)

背景・目的

本邦では根治切除可能な領域リンパ節転移を有する メラノーマに対して、免疫チェックポイント阻害薬や BRAF/MEK 阻害薬を用いた術後補助療法が標準的に 行われている. 一方, 海外ではそれらの薬剤を用いて, 根治切除可能な領域リンパ節転移を有する症例に対しての術前補助療法について第II相試験までの結果255.385-387)が報告されており、第III相試験(NADINA, NCT04949113)が進行中であった。しかしながら、用いる薬剤やレジメン、術前補助療法後の領域リンパ節

郭清施行の有無や術後補助療法の有無,方法などは各報告で統一されていない.すなわち術後補助療法と比較した術前補助療法の有効性や安全性については明確でない.本 CQ では,医療体制の確立した地域とくに東アジアの臨床的に明らかな領域リンパ節転移を有する皮膚メラノーマを対象とし,術前補助療法を行うべきか否かを科学的根拠に基づき検証することを目的とした.

科学的根拠

領域リンパ節転移を有する皮膚メラノーマを対象 (P) とし, 介入(I) を抗PD-1 抗体, 抗PD-1 抗体+ 抗 CTLA-4 抗体、BRAF/MEK 阻害薬のいずれかを用 いた術前補助療法, 比較対照 (C) は術後補助療法と し, 主要なアウトカム (O) は, 全生存期間, 無増悪 生存期間,有害事象,コスト, quality of life とした. なお、介入で使用する治療薬は本邦で販売されている ものに限定した. 現在の標準治療である術後補助療法 を対照としたランダム化比較試験は1編のみで,抗 PD-1 抗体の第 II 相試験であった (S1801)²⁵⁵⁾. 標準的 な術後補助療法以外を対照としたランダム化比較試験 は抗PD-1 抗体+抗CTLA-4 抗体の第 Ib 相試験 (OpA-CIN) 385, 386) BRAF/MEK 阻 害 薬 の 第 II 相 試 験 (NCT02231775)³⁸⁷⁾の2編が抽出された.これら以外の ランダム化比較試験で PICO に沿わないもの(例えば 術前補助療法 vs 術前補助療法) は該当する治療群 データとして採用した386.388~394). 症例集積研究は抗 PD-1 抗体+抗 CTLA-4 抗体^{395~397)}, 抗 PD-1 抗体^{398, 399)}, BRAF/MEK 阻害薬^{252,400~406)}についてそれぞれ採用し た. その他, 過去に出版されたシステマティックレ ビューや統合解析 3 編を採用した254.407.408). 各治療法で ランダム化比較試験1編と観察研究のみが抽出された ため、定性的システマティックレビューを行った. ア ウトカムの指標として,全生存期間,無増悪生存期間 についてはハザード比を抽出し、ハザード比が記載さ れていない場合は、2年生存率などの点推定値を抽出 した. 有害事象については grade 3以上のイベントの 発生率, およびリスク比を抽出した. 以下にランダム 化比較試験から抽出されたアウトカムを示す. 観察研 究については、非直接性やバイアスリスクが高く、術 前補助療法の優位性の判断が困難であった.

全生存期間については、いずれのランダム化比較試験においても有意差がなかった。抗PD-1 抗体+抗CTLA-4 抗体^{385, 386)}では術前補助療法群(nivolumab+ipilimumab)、術後補助療法群(nivolumab+ipilim-

umab) の 2 年生存率はそれぞれ 90%, 70%, 5 年生存率は 90%, 70% であった. 長期観察によるデータであるが、症例数が少なく統計解析できる試験設計ではなかった. 一方、抗 PD-1 抗体 255 , BRAF/MEK 阻害薬 387 では、観察期間が短く解析不能であった.

無増悪生存期間については, 抗PD-1 抗体+抗 CTLA-4 抗体のランダム化比較試験において術前補助 療法群 (nivolumab+ipilimumab), 術後補助療法群 (nivolumab + ipilimumab) の5年無再発生存率はそれ ぞれ70%,60%であったが有意差検定はなされていな かった^{385,386)}. 抗 PD-1 抗体のランダム化比較試験にお いて術前補助療法群(pembrolizumab)は術後補助療 法群 (pembrolizumab) と比較して、本 CQ のアウト カムとして採用しないが無増悪生存期間の代理アウト カムとなりうる無イベント生存期間 (event-free survival: EFS) が有意に延長した(2年無イベント生存 率:72% vs 49%, P=0.004)²⁵⁵⁾. 症例数が多く, 対照 となる術後補助療法群が現状の標準治療に設定されて いるため重要なデータであるが、まだ観察期間が短く 今後の長期観察後の解析結果を待つ必要がある. BRAF/MEK 阻害薬のランダム化比較試験では、術前 補助療法群 (dabrafenib + trametinib) は標準治療群 (6 例術後補助療法なし、1 例術後補助療法あり)と比 較して、観察期間中央値 18.6 カ月での EFS が有意に 延長していた (EFS 中央値: 19.7 カ月 vs 2.9 カ月, ハ ザード比 0.016, 95% 信頼区間 0.00012~0.14, P< 0.0001)387). しかしこの研究は症例数が少なく. 試験デ ザインの問題があり、バイアスが高い.

有害事象については、ランダム化比較試験における grade 3以上の有害事象に関する結果は以下の通りで あった. 抗 PD-1 抗体+抗 CTLA-4 抗体では、術前補 助療法群 (nivolumab+ipilimumab), 術後補助療法群 (nivolumab+ipilimumab) ともに90%であり、差はな かった^{385, 386)}. 抗PD-1 抗体 (pembrolizumab) では, 術前補助療法期に grade 3以上の有害事象が7%発生 したが、周術期や術後補助療法期の有害事象発生率は 術後補助療法群と差がなかった²⁵⁵⁾. BRAF/MEK 阻害 薬では、術前補助療法群 (dabrafenib + trametinib) 14 名に8件のgrade 3以上の有害事象が発生し、リスク 比は不明であった387). 術前補助療法のレジメンを比較 したランダム化比較試験(OpACIN-neo 試験)では nivolumab (1 mg/kg) + ipilimumab (3 mg/kg) 群よ 9 \$ nivolumab (3 mg/kg) + ipilimumab (1 mg/kg) 群の方が有害事象発生率が低かった386,392). 一方,

nivolumab (1 mg/kg) +ipilimumab (3 mg/kg) 群と nivolumab (3 mg/kg) 群を比較したランダム化比較 試験では、前者における grade 3 以上の有害事象発生率が73% (リスク比 8.73、95% 信頼区間 1.29~59) となり、早期試験中止になった³⁹⁰.

コストや quality of life についての研究はなかった. 本邦で販売されている薬剤を用いた術前補助療法に関する治験のうち、東アジア人または日本人を対象とした研究はなく、これらの人種が含まれていることが明記された研究もなかった.

解説

全生存期間については術前補助療法の優越性を示し た試験はなかったものの, 抗 PD-1 抗体 + 抗 CTLA-4 抗体では術前補助療法群 (nivolumab + ipilimumab) が 術後補助療法群 (nivolumab + ipilimumab) と比較し, 5年生存率が高い傾向にあった (90% vs 70%) 393). ま た、第II 相試験 S1801 では術前補助療法群 (pembrolizumab) が術後補助療法群 (pembrolizumab) より有 意に EFS が延長した²⁵⁵⁾. この試験は, 抗 PD-1 抗体を 術前から始めるか術後から始めるかで EFS が異なる ことを初めて示したが、観察期間が短く、術前補助療 法が最終的に全生存期間を延長するか否かは今後の解 析結果を待つ必要がある. 以上から, 抗 PD-1 抗体 + 抗 CTLA-4 抗体, 抗 PD-1 抗体による術前補助療法は 術後補助療法より優れている可能性が示唆されるが、 第 III 相試験の結果が本ガイドライン作成時点では未 発表であり、エビデンスとしては十分でないと判断し た. さらに東アジア人におけるエビデンスは存在せず, 現時点では東アジア人の臨床的に明らかな領域リンパ 節転移を有するメラノーマ患者に対して術前補助療法 を行うエビデンスは非常に弱いと判断した.

以下に今回設定したアウトカム以外で重要な所見を 挙げる.

(1) 病理組織学的奏効

術前補助療法後の指標リンパ節の病理組織学的奏効が 全生存期間や無再発生存期間の延長と相関することが 報告されており、多くの試験で主要評価項目として採 用されていた^{254,386,389,390,392,394,395,397,398,400)}. また、病理組織 学的奏効によって郭清や術後補助療法の有無を設定し た報告も存在する³⁹⁷⁾. 病理組織学的奏効は、International Neoadjuvant Melanoma Consortium の基準に より、pathologic complete response (pCR、生存腫瘍 細胞なし)、near pCR (生存腫瘍細胞が 10% 以下)、 pathologic partial response (pPR, 生存腫瘍細胞が 50% 以下)、pathologic no response (pNR, 生存腫瘍細胞が 50% より多い) に分類される。免疫チェックポイント阻害薬では pCR、near-pCR、pPR が良好な全生存期間や無再発生存期間と関連し、BRAF/MEK 阻害薬では pCR のみが良好な全生存期間や無再発生存期間と関連することが示されている²⁵⁴.

(2) 術前補助療法レジメンの比較

治療薬の種類や投与回数/期間には多くのバリエー ションがある. 初期の第 I~II 相試験の統合解析では 抗PD-1 抗体+抗CTLA-4抗体, 抗PD-1 抗体, BRAF/ MEK 阻害薬の比較データが記載されており、全生存 期間には差がない一方で、無再発生存期間では免疫 チェックポイント阻害薬がBRAF/MEK 阻害薬より も延長しており, 免疫チェックポイント薬では抗PD-1 抗体より抗 PD-1 抗体+抗 CTLA-4 抗体の方が有利で あった²⁵⁴⁾. 一方, 重篤な有害事象発生率は抗 PD-1 抗 体+抗CTLA-4 抗体の方が高い300). 術前補助療法開始 後6カ月間での無再発生存率は免疫チェックポイント 阻害薬よりも BRAF/MEK 阻害薬の方が高い傾向に あることを考慮する必要がある254. 科学的根拠の項で 述べたように、免疫チェックポイント阻害薬の併用法 の違いによって病理組織学的奏効や有害事象の差が生 じることも報告されている.

パネル会議では、以下の議論が行われた.

- ・抗 PD-1 抗体 + 抗 CTLA-4 抗体, 抗 PD-1 抗体, BRAF/MEK 阻害薬によってその効果や有害事象は異なるため, これらの薬剤を包括した推奨を決めてよいのか.
 - ・第 III 相試験の結果を待たずに推奨してよいのか.
- ・東アジア人データがほとんど無い中, どこまで本 ガイドラインで推奨していいのか.

という点を踏まえた上で十分なエビデンスがないため 推奨なしとすべき意見と、有益性が推測できるため条 件つきで推奨するという意見に分かれた。術前補助療 法の薬剤選択や用法・用量に関してまだ未確定な要素 が多いが、術前補助療法自体は有益である可能性が高 い、本邦では保険適用がない点を踏まえ、推奨文とし ては、「臨床試験の範囲内で提案する」という文言が議 論された。

・患者会の委員からは、メラノーマに対し術前補助療法の有効性が推測されていることや、他のがん種ではすでに導入されていることから、保険適用に向けた臨床試験を推進してほしいという意見があった.

議論の上で1回目の投票を行ったところ、弱く推奨

する(臨床試験の範囲内で提案する)への投票が多かったが80%を超えなかったため再度議論を行った. その際, 診療ガイドラインに臨床試験を勧めるような推奨文が適しているのかという点について特に議論がなされた. 再投票にて, 介入を弱く推奨する(17/19(89.5%)) 投票結果となった.

臨床に用いる際の注意点

術前補助療法はその有効性が示唆されている状況ではあるが、現時点において十分なエビデンスが確立していない。さらに東アジア人のデータは皆無であり、本邦において保険適用もない。よって現時点で術前補助療法を本邦で実施するのは困難であると言わざるを得ない。

今後の研究の可能性

今回のメタアナリシスの対象論文には含まれなかったが、最近第 III 相ランダム化比較試験(NADINA、NCT04949113)の結果が公表され、術前補助療法群(nivolumab+ipilimumab)が 術 後 補 助 療 法 群

(nivolumab) と比較し, 27.8 カ月時点での境界内平均 生存時間を 8.00 カ月有意に延長した (99.9% 信頼区間 4.94~11.05, P<0.001)²⁵⁶. 今後は, S1801 (抗 PD-1 抗 体) の長期データの結果によって, 術前補助療法の術 後補助療法に対する優越性が明らかになると思われる.

今後の研究の可能性として、薬剤の組み合わせの最適化、治療効果を予測するためのバイオマーカーの開発などが挙げられる。また、切除不能例に対する免疫チェックポイント阻害薬の奏効率に人種差があることを考慮すると、東アジア人を対象とした術前補助療法の有効性、安全性の評価は喫緊の課題である。今回のシステマティックレビューでは調査対象外となったが、中国から粘膜メラノーマに対する抗 PD-1 抗体toripalimab + axitinib 併用術前補助療法の第 II 相試験結果が報告されている4090. 今後さらに東アジア地域発の、あるいは東アジア人を組み入れた治験の実施が望まれる。

文献検索式と文献選択

タイトル	術前補助療法
CQ5	臨床的に明らかな領域リンパ節転移を有するメラノーマに対して術前補助療法は勧められる か?
データベース	PubMed,The Cochrane Library(CCSR,CCRCT),医学中央雑誌

[PubMed]

_		
#	検索式	文献数
	("Melanoma/drug therapy" [Mesh] OR ("Melanoma/therapy" [Mesh] AND ("Antineoplas-	
1	tic Agents, Immunological" [Mesh] OR "Antineoplastic Agents, Immunological" [PA])))	141
	AND "Neoadjuvant Therapy" [Mesh]	
	melanoma* [TI] AND neoadjuvant [TI] AND ("PD-1 inhibitor*" [TIAB] OR "CTLA-4	
2	inhibitor*" [TIAB] OR BRAF [TIAB] OR MEK [TIAB] OR Nivolumab [TIAB] OR Pem-	72
	brolizumab [TIAB] OR Ipilimumab [TIAB])	
3	1968: 2023 [DP] NOT "Case Reports" [PT]	
4	(#1 OR #2) AND #3	151

[The Cochrane library]

#	検索式	文献数
	melanoma*: ti AND lymph*: ti, ab, kw AND (node*: ti, ab, kw OR nodal: ti, ab, kw) AND metasta*: ti, ab, kw AND neoadjuvant: ti	22
9	"PD-1 inhibitor": ti, ab, kw OR "CTLA-4 inhibitor": ti, ab, kw OR BRAF: ti, ab, kw OR MEK: ti, ab, kw OR Nivolumab: ti, ab, kw OR Pembrolizumab: ti, ab, kw OR Ipilimumab: ti, ab, kw	7,744
3	#1 AND #2	20

[医学中央雑誌]

#	検索式	文献数
1	(黒色腫;薬物療法/TH or(黒色腫;治療/TH and 免疫学的抗腫瘍剤/TH)) and "リンパ行性 転移"/TH and "ネオアジュバント療法"/TH	8

	2	(メラノーマ/TA or 黒色腫/TA)and リンパ節/TA and 転移/TA and (術前補助/TI or 免疫チェックポイント阻害/TI or "抗 PD-1"/TI or "抗 CTLA-4"/TI or 分子標的/TI or BRAF/TI or MEK/TI or nivolumab/TI or pembrolizumab/TI or ipilimumab/TI or (nivolumab/TI and ipilimumab/TI))	66
	3	PT = 症例報告・事例除く	9,905,229
ſ	4	(#1 OR #2) AND #3	3

CQ6 領域リンパ節郭清を行った皮膚メラノーマに術後放射線療法は勧められるか?

推奨文	奨文				
推奨なし、ただし、局所再発リスクの高い患者に対しては術後放射線療法を選択肢として考慮する.					
推奨の強さ	エビデンスの強さ	合意率			
5 (推奨なし)	B (中)	(3 回目):90.9% (20/22)			

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施	しない」こ	5. 推奨なし	
	を推奨する	を提案する	とを提案する	とを推奨	する		
CQ6			18.2% (4/22)	22.7%	(5/22)	59.1% (13/	/22)
(1回目)					総投票数	22 名(棄権	0名)
CQ6			4.5% (1/22)	4.5%	(1/22)	90.9% (20/	/22)
(2回目)					総投票数	22 名(棄権	0名)
CQ6			4.5% (1/22)	4.5%	(1/22)	90.9% (20/	/22)
(3回目)					総投票数	22 名(棄権	0名)

背景・目的

臨床的に明らかな領域リンパ節を有する場合には、遠隔転移だけでなく、術後の領域リンパ節再発の頻度も高く、局所制御不能の領域リンパ節再発は出血、感染、疼痛、四肢の浮腫などを伴い quality of life を低下させる。そのため、リンパ節郭清後の領域リンパ節再発の危険性が高い症例においては術後の積極的な介入が検討される。一方で、主な術後介入手段となりうる放射線療法でも、組織の線維化/硬結や末梢のリンパ浮腫などの合併症も生じうる、病期 III 患者に対するリンパ節郭清後の術後放射線療法の意義を評価することを目的とする。

科学的根拠

東アジアの領域リンパ節郭清を行った皮膚メラノーマを対象 (P) とし、介入 (I) を術後放射線療法の実施、比較対照 (C) を術後放射線療法なしで経過観察とした。主要なアウトカム (O) は、全生存期間、無再発生存期間、照射部位の局所制御、合併症、コスト、quality of life とした。

PICO の介入と対照のとおりの2群でランダム化比較試験 (randomized control trial: RCT) を行った試験は調べた限り東アジア領域においては見当たらなかったが、東アジア以外の地域で行われた2編のRCT

の報告が抽出された^{164,410)}. うち1編は試験実施時期が古く、登録患者数に対して解析対象から除外されている症例が多いなど、結果の解釈に疑問がある報告であり、1編のみを評価の対象とした¹⁶⁴⁾. また、後ろ向き観察研究については対象症例数 200 例以上の報告を選択・採用基準として、6編が抽出されたが、いずれも東アジア以外の地域で行われた研究だった^{165~170)}. 文献検索およびスクリーニングの結果、2編の海外RCT^{164,410)}と6編の海外後ろ向き観察研究^{165~170)}を採用し解析した、RCTのうち1編は、古い研究で研究デザインの質が低いことから評価の対象から除外し⁴¹⁰⁾、結果的に1編のRCTしか残らなかった¹⁶⁴⁾ためにメタアナリシスは行わなかった。

全生存期間,無再発生存期間については、唯一の評価対象となった RCT で、術後放射線療法の有無による有意差を認めなかった(全生存期間:ハザード比1.27、95% 信頼区間 $0.89\sim1.79$ 、P=0.21、無再発生存期間:ハザード比 0.89、95% 信頼区間 $0.65\sim1.22$ 、P=0.51) 164 . 一方、採用した後ろ向き研究 6 編では、全生存期間、無再発生存期間の結果は一貫していなかった。

照射部位の局所制御については、領域リンパ節再発率が術後放射線療法群で有意に低下していた(ハザード比 0.52, 95% 信頼区間 0.31~0.88, P=0.023)¹⁶⁴. 後

ろ向き研究のうち局所再発率について検討された5編中3編^{165~167)}では、術後放射線療法群の有意な局所再発率低下が認められた.

有害事象(合併症)に関しては、下肢の平均体積比が術後放射線療法群で有意に高かったが、リンパ浮腫の発生率は術後放射線療法群と観察群との間に有意差はなかった¹⁶⁴⁾.一方、採用した後ろ向き研究6編では、有害事象の結果は一貫していなかった.

Quality of life については、治療後 12 カ月までは術 後放射線療法群で低下がみられたが、60 カ月では有意 差を認めなかった¹⁶⁴.

コストについては、術後放射線療法群と経過観察群とを比較した研究はなかった.

解説

領域リンパ節郭清を行った皮膚メラノーマに対する 術後放射線療法の実施について,前版ガイドラインでは行うことが提案された.しかしこの推奨は東アジア領域を含まない海外のランダム化比較試験が元になっており,術後補助療法の薬剤選択肢が限られている時期に作成されたものである.近年,複数の有効な新規薬剤が術後補助療法として選択可能な中で,術後放射線療法の意義を再評価する必要があると考えられる.東アジア領域で行われた研究は後ろ向き観察研究を含めて見られなかった.また,結果的に前版のガイドライン作成時から新たなエビデンスの追加はなかった.そして多くの後ろ向き研究で介入,比較対照群間の患者背景に差があり,これらの研究の結果にはばらつきもあることからリンパ節郭清後の術後放射線療法の意義の評価は困難と考えた.

採用した文献では術後放射線療法と術後補助療法とを直接比較することができず、パネル会議では、この点について多くの議論が行われた。術後放射線療法を選択することによって術後補助療法の開始が遅れることを危惧する意見がある一方で、現時点でも、有害事象や合併症などの理由で術後補助療法が行えない患者が一定数存在する状況下で、局所制御を一定の利益とする意見もあった。そのため介入の可否について明確な推奨を提示することは困難との意見が多数を占める結果となった。

以上より,前版ガイドラインとは異なり,領域リンパ節郭清を行った皮膚メラノーマに対する術後放射線療法については「推奨なし」に投票が集中した.1回目の投票では,「推奨なし」への投票が多数あり,推奨の向きと強さを決定できなかった.1回目投票後のパ

ネル会議での議論では、行うことを推奨するだけの十分な根拠はないだけであり、局所再発の低下は示唆されることから、部位に応じて術後放射線療法の適応を考慮するのがよいとの意見が出た. しかしながら本 CQ でのエビデンス総体の強さでは、投票を重ねても推奨の向きが一致しない可能性が高いことを鑑み、仮に2回目以降の投票でも推奨の向きが一致せず、「推奨なし」の投票結果となった場合でも「局所再発リスクの高い患者に対しては選択肢として考慮する」という説明を付加することが提案され、合意を得た. その上で、再度投票を行ったところ、2回目、3回目とも「推奨なし」に投票がさらに集中し、上記説明を付加した上での「推奨なし」の投票結果となった.

臨床に用いる際の注意点

本CQで採択されたRCTと後ろ向き観察研究はいずれも東アジア領域以外で行われた研究であるが、東アジア人に対して上記のエビデンスと異なる判断をするだけのエビデンスや理由は認められないと判断される。また、術後放射線療法を行うに当たっては、その有益性と毒性とを比較し、薬物療法の有益性および毒性とも比較し、放射線療法を行うことによって術後補助療法のタイミングが遅れる影響も考慮してその適応を検討することが望まれる。

今後の研究の可能性

今回採択された論文の中には、東アジア人を対象とした研究や解析がなされているものは見られなかった。今後、東アジア人もしくは日本人を対象にしたエビデンスの確立が望まれる。

また現状では、免疫チェックポイント阻害薬、分子標的薬を用いた術後補助療法が普及する以前に行われた研究が本ガイドラインの推奨のエビデンスとなるため、免疫チェックポイント阻害薬や分子標的薬などの術後補助療法と放射線療法との効果差や、併用した場合の効果については評価ができなかった。各種薬剤が術後補助療法として薬事承認されている本邦の現状で、術後放射線療法の有益性よりも、全身療法との併用における放射線療法の有益性について検討することが求められる。このため今後は術後療法と、術後補助療法+術後放射線療法併用との間で、局所再発率、無再発生存期間、全生存期間、有害事象等について比較検討する臨床試験が必要と思われる。

文献検索式と文献選択

	
タイトル	術後放射線療法
CQ6	領域リンパ節郭清を行った皮膚メラノーマに術後放射線療法は勧められるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌

[PubMed]

#	検索式	文献数
	(("Melanoma/radiotherapy" [Mesh] OR ("Melanoma/therapy" [Mesh] AND "Radiotherapy,	
	Adjuvant" [Mesh])) AND "Lymph Node Excision" [Mesh]) OR (melanoma* [TI] AND	
1	adjuvant [TI] AND (radiotherapy [TI] OR radiation [TI]) AND (lymphadenectom* [TIAB]	152
	OR (postoperative* [TIAB] AND (lymph* [TIAB] OR node* [TIAB] OR nodal [TIAB])))))	
	AND 1968: 2023 [DP] NOT "Case Reports" [PT]	

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti AND adjuvant: ti AND (radiotherapy: ti OR radiation: ti) AND (lymphadenectom*: ti, ab, kw OR (postoperative*: ti, ab, kw AND (lymph*: ti, ab, kw OR node*: ti, ab, kw OR nodal: ti, ab, kw)))	

[医学中央雑誌]

#	検索式	文献数
1	((("黒色腫"/TH) and (SH=放射線療法, 治療) and "アジュバント放射線療法"/TH and "リンパ節切除"/TH) or ((メラノーマ/TA or 黒色腫/TA) and リンパ節/TA and 転移/TA and (放射線/TI or 照射/TI) and (術後/TA or 手術/TA or アジュバント/TA))) and (PT=症例報告・事例除く)	11

CQ7 根治切除不能なBRAF変異陰性メラノーマの一次治療は抗PD-1 抗体, 抗PD-1 抗体+抗CTLA-4 抗体のいずれが勧められるか?

推奨文			
根治切除不能な BRAF 変異陰性メラノーマの一次治療は抗 PD-1 抗体を提案する.			
推奨の強さ	エビデンスの強さ	合意率	
3 (実施しないことを提案)	C (弱)	(1回目):100% (20/20)	

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし	
	を推奨する	を提案する	とを提案する	とを推奨する		
CQ7			100% (20/20)			
(1回目)				総投票数	20 名(棄権	2名)

背景・目的

本邦における根治切除不能な BRAF 変異陰性メラノーマの一次治療の選択肢は抗 PD-1 抗体または抗 PD-1 抗体+抗 CTLA-4 抗体である.一般に BRAF 変異陽性メラノーマでは抗 PD-1 抗体+抗 CTLA-4 抗体における生存期間の延長効果は低くなる傾向がある.海外第 III 相臨床試験 CheckMate067では,BRAF 変異陽性メラノーマでは nivolumab 単剤療法に対して nivolumab + ipilimumab 併用療法の無増悪生存期間が有意に延長していた(ハザード比 0.62,95% 信頼区間 0.44~0.89)も

のの、BRAF変異陰性メラノーマでは有意差はなかった(HR 0.88、95%信頼区間 0.69~1.12)、NCCN ガイドラインでは、BRAF変異の有無に関わらず、根治切除不能なメラノーマの一次治療として抗 PD-1 抗体+抗 CTLA-4 抗体の方をより強い推奨としている³³、一方で有害事象に関しては全 grade および grade3 以上の有害事象の発生率は抗 PD-1 抗体+抗 CTLA-4 抗体の方が高い、欧米のメラノーマに比べ免疫チェックポイント阻害薬の効果が高くない東アジアのメラノーマにおいて、一次治療として抗 PD-1 抗体と抗 PD-1 抗体+抗 CTLA-4 抗体のいずれを行うべきか、科学的根拠

をもとに適切に選択する必要がある.

科学的根拠

根治切除不能な BRAF 変異陰性メラノーマを対象 (P) とした一次治療として,介入 (I) としての抗 PD-1 抗体+抗 CTLA-4抗体と比較対照 (C) としての抗 PD-1 抗体のいずれが勧められるかを検証するために,全生 存期間,無増悪生存期間,奏効率,有害事象,quality of life,コストをアウトカム (O) として設定し,文献検索を行った.

文献検索およびスクリーニングの結果,3編の欧米のランダム化比較試験^{324,330,411)}と2編の本邦後ろ向き観察研究^{333,335)}および3編の本邦前向き単群介入試験^{331,332,412)}を採用し解析した.

全生存期間および無増悪生存期間については、欧米 のランダム化比較試験のネットワークメタアナリシス では,抗 PD-1 抗体に対する抗 PD-1 抗体 + 抗 CTLA-4 抗体のハザード比は全生存期間で 0.92 (95% 信頼区間 0.72~1.18), 無増悪生存期間で 0.87 (95% 信頼区間 0.68~1.09) であり、併用による生存期間の有意な延長 は見られなかった. 本邦前向き単群介入試験331,332,412)で は、ハザード比での解析が行えずオッズ比での解析と なってしまうこと、両試験の観察期間の差が大きいこ とからメタアナリシスを行うことは妥当ではないと判 断し、後ろ向き観察研究333.335)のメタアナリシスを行う こととした. なお,参考値となるが,単群介入試 験331,332,412)のオッズ比の比較では単剤・併用群間で有意 差は見られなかった. 本邦の後ろ向き観察研究333,335)の メタアナリシスでは, 抗 PD-1 抗体に対する抗 PD-1 抗 体+抗CTLA-4 抗体のハザード比は全生存期間で 0.79 (95% 信頼区間 0.49~1.26), 無増悪生存期間で 0.65 (95% 信頼区間 0.37~1.14) であり、併用による生存期 間の有意な延長は見られなかった.

奏効率については、本邦の後ろ向き観察研究^{333,335)}の メタアナリシスでは、有意差はなかった(オッズ比 3.67,95% 信頼区間 0.28~48.77).

有害事象については、CheckMate067では全 grade の有害事象発生率は抗 PD-1 抗体 + 抗 CTLA-4 抗体で 96%, 抗 PD-1 抗体で 87%, grade3 以上は抗 PD-1 抗体 + 抗 CTLA-4 抗体で 59%, 抗 PD-1 抗体で 24% であり、いずれも抗 PD-1 抗体 + 抗 CTLA-4 抗体で増加していた³³⁰. 本邦前向き単群介入試験結果^{331,332,412)}を統合したところ、全 grade の有害事象発生率は抗 PD-1 抗体 + 抗 CTLA-4 抗体で 100%, 抗 PD-1 抗体で 83.3% (P = 0.0336)、grade3 以上は抗 PD-1 抗体 + 抗 CTLA-4 抗

体で 76.7%, 抗 PD-1 抗体で 12.5% であり (P<0.0001), いずれも抗 PD-1 抗体 + 抗 CTLA-4 抗体で有意に増加していた.

Quality of life, コストについては両者を比較した研究はなく、評価できなかった.

解説

NCCN ガイドライン³³⁾など欧米のガイドラインで は、根治切除不能メラノーマに対する一次治療として 抗 PD-1 抗体 + 抗 CTLA-4 抗体がより強く推奨されて いる. しかしこれらの推奨の元となったランダム化比 較試験には欧米のメラノーマが主に含まれる. 末端型 メラノーマや東アジア人のメラノーマに対しては免疫 チェックポイント阳害薬の治療効果が低いことが報告 されており、本邦を含めた東アジアでのメラノーマ治 療に欧米のガイドラインをそのまま適用することは適 当でないと考えられる. そのため, 本 CQ のシステマ ティックレビューでは欧米のランダム化比較試験はい ずれも非直接性が高いと判断し、東アジアからの単群 試験や前向き・後ろ向き観察研究も含めて文献スク リーニングを行った. 欧米のランダム化比較試験の ネットワークメタアナリシス、後ろ向き観察研究のメ タアナリシスの結果は概ね同様で、本 CQ の主アウト カムである全生存期間、無増悪生存期間ともに併用に よる有意な延長は見られない一方で、副次アウトカム である有害事象は増加していた. パネル会議では、併 用による有益性よりも害が上回るとの見解が概ね一致 し、パネル会議での介入しないことを提案する(抗 PD-1 抗体+抗 CTLA-4 抗体よりも抗 PD-1 抗体を提案 する) 投票結果となった.

臨床に用いる際の注意点

本 CQ の推奨は欧米のランダム化比較試験と本邦後 ろ向き観察研究の解析結果の総合的な判断によるもの であるが、欧米のランダム化比較試験は非直接性の問 題があり、後ろ向き観察研究はバイアスリスクが高い ため、エビデンスは強くないことに注意が必要である.

採用した観察研究のうち、Inozume らの報告³³⁵⁾では 抗PD-1 抗体+抗CTLA-4抗体群で抗PD-1 抗体群より も脳転移の割合がわずかに多く、Nakamura らの報 告³³³⁾でも抗PD-1 抗体+抗CTLA-4 抗体群で複数臓器 への転移がある患者の割合が多かった。抗PD-1 抗体 +抗CTLA-4 抗体は病状がより進行した患者に用いら れやすいことが推察され、こうした背景因子の違いが 陰性結果につながった可能性が否定できない。また、 Nakamura らの報告³³³⁾では爪部原発メラノーマにおい ては、有意差はないものの抗 PD-1 抗体+抗 CTLA4 抗体が抗 PD-1 抗体よりも無増悪生存期間を延長させる傾向(P=0.10)が示されている。脳転移は欧米のガイドラインでは抗 PD-1 抗体+抗 CTLA4 抗体が強く勧められているが、今回採用したランダム化比較試験や本邦観察研究では脳転移症例が少なく十分な検討ができていない。したがって、爪部原発メラノーマや脳転移など特定の状況下においては抗 PD-1 抗体よりも抗 PD-1 抗体+抗 CTLA-4 抗体が有益である可能性が残る。

今後の研究の可能性

今回のメタアナリシスでは東アジアからは後ろ向き 観察研究しか採用できなかった。東アジア人における 最適な一次治療に関してはランダム化比較試験で再検 証される必要がある.

CheckMate 511 413) では異なる用量設定での nivolumab + ipilimumab 併用療法の安全性と有効性が検討され、nivolumab (3 mg/kg) + ipilimumab (1 mg/kg) では効果を損なわずに有害事象を低減できる可能性が示されている。また、NCCN ガイドライン33)では抗PD-1 抗体 + 抗LAG-3 抗体が抗PD-1 抗体 + 抗CTLA-4 抗体と同様に強く推奨され、欧米では抗LAG-3 抗体の併用が実臨床で行われている。Nivolumab + ipilimumabの添付文書記載の用量と異なる用量での投与や抗LAG-3 抗体は本邦未承認であるが、将来的にはこれらの新規薬剤や用量設定を含めた一次治療の再検討が必要となる可能性がある。

文献検索式と文献選択

タイトル	根治切除不能な BRAF 変異陰性メラノーマ
1(-(.))/	根治切除不能な BRAF 変異陰性メラノーマの一次治療は抗 PD-1 抗体と抗 PD-1 抗体 + 抗 CTLA-4 抗体のいずれが勧められるか?
	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌

[PubMed]

#	検索式	文献数
1	"Melanoma/drug therapy" [MH] OR "advanced melanoma" [TI: ~5] OR "high risk melanoma" [TI: ~5]	20,049
2	(Melanoma [MH] OR melanoma* [TI]) AND ("drug therap*" [TIAB] OR pharmacotherap* [TIAB] OR "pharmaco therap*" [TIAB] OR chemotherap* [TIAB] OR "chemo therap*" [TIAB] OR immunotherap* [TIAB] OR immunotherap* [TIAB] OR "target therap*" [TIAB] OR "targeted therap*" [TIAB])	18,167
3	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti PD1" [TI] OR "anti PD 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	24,303
4	((T-Lymphocytes, Cytotoxic [MH] AND CTLA-4 Antigen [MH]) AND anti [TIAB]) OR "anti CTLA4" [TI] OR "anti CTLA 4" [TI] OR Ipilimumab [MH]	3,384
5	(#1 OR #2) AND (#3 OR #4)	3,694
6	unresectable [TI] OR "East Asian People" [MH] OR "Asia, Eastern" [MH] OR asian* [TI] OR japan* [TI] OR chinese [TI] OR china [TI] OR korea* [TI] OR mongolia* [TI] OR taiwan* [TI] OR wildtype [TI] OR "wild type" [TI] OR BRAFwt [TI] OR "BRAF wt" [TI] OR "BRAF negative" [TI: ~2] OR "lacking BRAF" [TI: ~2] OR "first line" [TI] OR "advanced melanoma" [TI]	761,471
7	#5 AND #6	597
8	#7 NOT "Case Reports" [PT]	537

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti	4,199
	(drug-therap* OR pharmacotherap* OR pharmaco-therap* OR chemotherap* OR chemo-	
2	therap* OR immunotherap* OR immuno-therap* OR immunochemotherap* OR target-	100,476
	therap* OR targeted-therap*): ti, ab	
	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*)	
3	OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembroli-	6,455
	zumab): ti, ab	
4	("anti CTLA4" OR "anti CTLA 4" OR (("anticytotoxic t lymphocyte" OR "anticytotoxic t	1.020
4	cell lymphocyte" OR "anti cytotoxic t lymphocyte") NEAR/4 4) OR Ipilimumab): ti, ab	1,938

5	#1 AND #2 AND (#3 OR #4)	347
6	(unresectable OR asian* OR japan* OR chinese OR china OR korea* OR mongolia* OR taiwan* OR wildtype OR "wild type" OR BRAFw OR "BRAF wt" OR (BRAF NEAR/3 (negative OR lacking)) OR "first line"): ti, ab	
7	#5 AND #6	133
8	#7 CDSR	1
9	#7 CCRCT	132

[医学中央雑誌]

#	検索式	文献数
1	黒色腫;薬物療法/TH or 進行メラノーマ/TA or 進行期メラノーマ/TA or 進行期黒色腫/TA or 進行黒色腫/TA or 進行悪性黒色腫/TA or 進行期悪性黒色腫/TA or ハイリスクメラノーマ/TA	5,226
2	(黒色腫/TI or メラノーマ/TI or 黒色がん/TI or 黒色ガン/TI or 黒色癌/TI or 黒色肉腫/TI) and (薬物療法/AL or 薬物治療/TA or 化学療法/TA or 併用療法/TA or 投与/TA or 治療薬/TA or 免疫療法/AL or 抗体療法/TA)	5,265
3	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	19,147
4	(細胞傷害性 T 細胞/TH and CTLA-4 抗原/TH) or Ipilimumab/TH or ipilimumab/TA or ipilimumab/TA	2,821
5	(#1 or #2) and (#3 or #4)	2,299
6	東アジア/TH or アジア人/TH or アジア/TA or 日本/TA or 変異陰性/TA or 切除不能/TA or 一次治療/TA	451,296
7	#5 and #6	183
8	#7 and PT = 会議録除く and PT = 症例報告・事例除く	94

CQ8 根治切除不能な BRAF 変異陽性例の一次治療は BRAF/MEK 阻害薬, 抗 PD-1 抗体, ないしは抗 PD-1 抗体+抗 CTLA-4 抗体併用療法のいずれが勧められるか?

推奨文

東アジアにおいては根治切除不能な BRAF 変異陽性例の一次治療として、BRAF/MEK 阻害薬、抗 PD-1 抗体、ないしは抗 PD-1 抗体+抗 CTLA-4 抗体併用療法を同程度に提案する.

推奨の強さ	エビデンスの強さ	合意率
5 (推奨なし)	C (弱)	(3回目):100% (21/21)

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし
	を推奨する	を提案する	とを提案する	とを推奨する	
CQ8					100% (21/21)
(1回目)				総投票数	21 名 (棄権 1 名)
CQ8					100% (21/21)
(2回目)				総投票数	21 名 (棄権 1 名)
CQ8					100% (21/21)
(3回目)				総投票数	21 名 (棄権 1 名)

背景・目的

海外では根治切除不能なBRAF変異陽性メラノーマの一次治療として抗PD-1 抗体+抗CTLA-4 抗体併用療法が推奨されている。しかしながら、そのエビデンスとなった臨床試験は白人を主体に行われた欧米の試験である。最近の多くのリアルワールドデータや基礎研究の結果から、免疫チェックポイント阻害薬の効

果には地域差,人種差があることが示唆されており,それを支持する臨床の現場からの意見も多い.こうした状況においては,従来のような欧米のランダム化比較試験(randomized controlled trial:RCT)の結果のみに基づいた推奨が,本邦を含む東アジアの根治切除不能な BRAF 変異陽性例における最善の治療選択に結びつかない可能性がある.したがって東アジアのエ

ビデンスを加味した、東アジアにおける推奨を検討することは重要である.

科学的根拠

本CQではとくに東アジアにおける。根治切除不能なBRAF変異陽性メラノーマを対象(P)とした一次治療につき、介入(I)を抗PD-1 抗体ないしは抗PD-1 抗体+抗CTLA4抗体併用療法、比較対照(C)をBRAF/MEK 阻害薬とし、アウトカム(O)として全生存期間、無増悪生存期間、奏効率、有害事象、コスト、quality of life について比較した。

本 CQ を検証するデザインの RCT は存在しなかったが、BRAF/MEK 阻害薬群と抗 PD-1 抗体 + 抗 CTLA-4 抗体併用療法群を比較した欧米の RCT が 2 編あった。また、抗 PD-1 抗体群も併せて解析するため さらに 5 編の $RCT^{284,330,414~416)}$ を追加したネットワークメタアナリシスを行った。

全生存期間については、第 III 相試験 DREAMseq³⁷²⁾では BRAF/MEK 阻害薬群と比較して抗 PD-1 抗体+抗 CTLA-4 抗体併用療法群で有意に全生存期間が延長した(2 年生存率: 51.5% vs 71.8%,P=0.010). また第 II 相試験 SECOMBIT³⁷³⁾でそれぞれの群の 3 年生存率は 54%,62%で,抗 PD-1 抗体+抗 CTLA-4 抗体併用療法群で高い傾向であった(有意差検定なし). ネットワークメタアナリシスでは,BRAF/MEK 阻害薬群に対する OS のハザード比(hazard ratio: HR)は抗 PD-1 抗体群で 1.07(95% CI 0.54~2.11),抗 PD-1 抗体+抗 CTLA-4 抗体群で 0.73(95% CI 0.42~1.26)で,抗 PD-1 抗体+抗 CTTLA-4 抗体併用療法群が優位な傾向があった.

無増悪生存期間については、ネットワークメタアナリシスでのBRAF/MEK 阻害薬群に対するPFSのHRは抗PD-1 抗体群で1.15 (95% CI 0.64~2.07)、抗PD-1 抗体+抗CTLA-4 抗体併用療法群で0.71 (95% CI 0.43~1.17)で、抗PD-1 抗体+抗CTTLA-4 抗体併用療法群が優位な傾向があった。

奏効率については、ネットワークメタアナリシスでの BRAF/MEK 阻害薬群、抗 PD-1 抗体群、抗 PD-1 抗体 + 抗 CTLA 4 抗体併用療法群の奏効率はそれぞれ 65.4%、44.9%、53.6% であり、BRAF/MEK 阻害薬群に対するオッズ比はそれぞれ 0.28 (95% CI 0.08~0.92) と 0.47 (95% CI 0.22~1.02) で、BRAF/MEK 阻害薬群が優位な傾向があった。

有害事象については、ネットワークメタアナリシス での grade 3 以上の有害事象発生率は BRAF/MEK 阻 害薬群, 抗 PD-1 抗体群, 抗 PD-1 抗体+抗 CTLA-4 抗体併用療法群でそれぞれ 58.4%, 23.1%, 60.9% で, 抗 PD-1 抗体で低く, 抗 PD-1 抗体+抗 CTTLA-4 抗体併用療法群で高い傾向があった.

一方で、本 CQ を検証するために利用できる東アジアからの RCT は存在しなかった。そこで大規模後ろ向き研究のリアルワールドデータ 2 編を用いてネットワークメタアナリシスを行った^{289,374)}.

全生存期間については、BRAF/MEK 阻害薬群に対する全生存期間のHR は抗PD-1 抗体群で0.98 (95% CI 0.39~2.46), 抗 PD-1 抗体+抗 CTLA-4 抗体併用療法群で0.67 (95% CI 0.28~2.47) であり、DREAMseqで示されたような抗 PD-1 抗体+抗 CTLA-4 抗体併用療法群の優位性は示されなかった.

無増悪生存期間についても、BRAF/MEK 阻害薬群 に対する全生存期間のHR は抗PD-1 抗体群で1.03 (95% CI 0.30~3.57), 抗 PD-1 抗体+抗 CTLA-4 抗体 併用療法群で0.97 (95% CI 0.20~4.65) であり. 抗PD-1 抗体+抗CTLA-4抗体併用療法群の優位な傾向は示さ れなかった. 奏効率はBRAF/MEK 阻害薬群. 抗 PD-1 抗体群, 抗 PD-1 抗体+抗 CTLA-4 抗体併用療法群, でそれぞれ 69.1%, 32.7%, 27.8% で、BRAF/MEK 阻 害薬群に対するオッズ比は 0.35 (95% CI 0.22~0.58) と 0.17 (95% CI 0.08~0.38) であり、BRAF/MEK 閉 害薬群が優位な傾向と, 欧米と比較して免疫チェック ポイント阻害薬の効果が劣る傾向が示された. これは これまで東アジアから発表されてきた多くの臨床試験 やリアルワールドデータの傾向と合致し、東アジアに おける免疫チェックポイント阻害薬の効果に関して は、欧米のデータとの非直接性が示唆された.

有害事象については、Grade 3以上の有害事象発生率はBRAF/MEK 阻害薬群、抗 PD-1 抗体群、抗 PD-1 抗体 + 抗 CTLA-4 抗体併用療法群の順に、34.7%、21.9%、75%で、抗 PD-1 抗体で低く、抗 PD-1 抗体 + 抗 CTLA-4 抗体併用療法群で高い傾向があった。

コスト, quality of life については、海外、本邦のいずれの研究においても本 CQ で設定した介入群、対照群を比較した研究はなかった.

解説

NCCN ガイドライン³³など欧米の主なガイドラインでは、根治切除不能なBRAF変異陽性例の一次治療として抗PD-1 抗体+抗CTLA-4 抗体併用療法が強い推奨、抗PD-1 抗体が推奨、BRAF/MEK 阻害薬は弱い推奨との位置付けである. パネル会議では、今回のネッ

トワークメタアナリシスにおいて、奏効率は欧米、本 邦ともに BRAF/MEK 阻害薬が他の 2 治療よりも高 く. 重篤な有害事象発生率は欧米. 本邦ともに抗 PD-1 抗体+抗CTLA-4抗体併用療法が高い傾向はあったも のの、現状の東アジアのリアルワールドデータを利用 した解析では、この3つの治療に優劣をつけるべきエ ビデンスにはなり得ないと判断した. しかし抗PD-1抗 体および抗 PD-1 抗体+抗 CTLA-4 抗体併用療法の効 果について、欧米と東アジアでは非直接性があること も示唆された. この解析結果に基づき, 前述の議論の 上で行われた投票では、推奨の方向が決定せず、3回 とも棄権を除く票の全てが、推奨なしに投じられた. 以上の経緯によって、現状では、本CQで設定した介 入と対照のいずれかを推奨することはできず、東アジ ア人の根治切除不能な BRAF 変異陽性例の一次治療 として、BRAF/MEK 阻害薬, 抗 PD-1 抗体, ないし は抗 PD-1 抗体+抗 CTLA-4 抗体併用療法を同程度に 提案するに留まった.

臨床に用いる際の注意点

エビデンスは高いが非直接性の問題がある欧米 RCTのネットワークメタアナリシスの結果と、様々な バイアスリスクを含む東アジアのリアルワールドデー タのネットワークメタアナリシスの結果に基づいた提 案であるため、欧米での主に白人に対する一次治療と して推奨されている抗 PD-1 抗体+抗 CTLA-4 抗体併 用療法の有効性を否定するものではない. 欧米のRCT では、BRAF/MEK 阻害薬群, 抗PD-1 抗体群, 抗PD-1 抗体+抗CTLA-4抗体併用療法群の奏効の特徴(time to response (TTR) と奏効持続期間) の相違が示唆さ れている(TTR中央値および奏効持続期間中央値:1.8 カ月, 16.6 カ月 vs 2.78 カ月, 未到達 vs 2.76 カ月, 未 到達)417,418). 前述の通り白人と東アジア人の間に効果の 非直接性があるものの, このようなデータも参考に, 個々の進行期患者の状況に応じて薬剤を選択すること も必要である. 病勢進行が早くそれに伴う疼痛などを 制御する目的であればBRAF/MEK 阳害薬、病勢進行 が緩徐で効果発現までに時間的余裕がある状況では長 期の奏効持続期間を期待して免疫チェックポイント阻 害薬を選択するなど、投与経路(経口または点滴)、有 害事象プロファイル. 患者の価値観や社会背景を加味 して話し合い、適用することが重要である.

今後の研究の可能性

東アジアにおけるRCT,可能であれば病型別のRCTが必要である.一方で今後のバイオマーカー探索研究等によって、人種や病型などの非直接性を克服する治療選択を目指すことが望ましい.

文献検索式と文献選択

タイトル	根治切除不能な BRAF 変異陽性メラノーマ	
CO8	根治切除不能な BRAF 変異陽性例の一次治療は BRAF/MEK 阻害薬,抗 PD-1 抗体,ないしは	
CQ8	抗 PD-1 抗体 + 抗 CTLA-4 抗体併用療法のいずれが勧められるか?	
データベース	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌	

[PubMed]

#	検索式	文献数
1	"Melanoma/drug therapy" [MH] OR "advanced melanoma" [TI: ~5] OR "high risk melanoma" [TI: ~5]	20,049
2	(Melanoma [MH] OR melanoma* [TI]) AND ("drug therap*" [TIAB] OR pharmacotherap* [TIAB] OR "pharmaco therap*" [TIAB] OR chemotherap* [TIAB] OR "chemo therap*" [TIAB] OR immunotherap* [TIAB] OR immunochemotherap* [TIAB] OR "target therap*" [TIAB] OR "targeted therap*" [TIAB])	18,166
3	("Proto-Oncogene Proteins B-raf" [MH] AND "Mitogen-Activated Protein Kinase Kinases" [MH]) OR (dabrafenib [NM] AND trametinib [NM]) OR (encorafenib [NM] AND binimetinib [NM]) OR (Vemurafenib [MH] AND cobimetinib [NM])	1,418
4	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti PD1" [TI] OR "anti PD 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	24,302
5	((T-Lymphocytes, Cytotoxic [MH] AND CTLA-4 Antigen [MH]) AND anti [TIAB]) OR "anti CTLA4" [TI] OR "anti CTLA 4" [TI] OR Ipilimumab [MH]	3,384
6	(#1 OR #2) AND (#3 OR #4 OR #5)	4,342

7	unresectable [TI] OR "East Asian People" [MH] OR "Asia, Eastern" [MH] OR asian* [TI] OR japan* [TI] OR chinese [TI] OR china [TI] OR korea* [TI] OR mongolia* [TI] OR taiwan* [TI] OR "BRAF mutation" [TI: ~2] OR "BRAF mutated" [TI: ~2] OR "BRAFV600 mutated" [TI: ~2] OR "BRAFV600 mutated" [TI: ~2] OR "BRAFV600 mutant" [TI: ~2] OR "first line" [TI] OR (((advanced [TI] AND combin* [TI]) OR (metastatic [TI] AND plus [TI])) AND melanom [TI])	750,829
	#6 AND #7	444
9	#8 NOT "Case Reports" [PT]	398

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti	4,199
2	(drug-therap* OR pharmacotherap* OR pharmaco-therap* OR chemotherap* OR immunotherap* OR immunochemotherap* OR targettherap* OR targeted-therap*): ti, ab	100,476
3	(((BRAF OR BRAFi OR BRAFis) AND (MEK OR MEKi OR MEKis)) OR (dabrafenib AND trametinib) OR (encorafenib AND binimetinib) OR (Vemurafenib AND cobimetinib)): ti, ab	566
4	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*) OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembrolizumab): ti, ab	6,455
5	("anti CTLA4" OR "anti CTLA 4" OR (("anticytotoxic t lymphocyte" OR "anticytotoxic t cell lymphocyte" OR "anti cytotoxic t lymphocyte") NEAR/4 (1) OR Ipilimumab): ti, ab	1,938
6	#1 AND #2 AND (#3 OR #4 OR #5)	430
7	(unresectable OR asian* OR japan* OR chinese OR china OR korea* OR mongolia* OR taiwan* OR ((BRAF OR BRAFV600) NEAR/3 (mutated OR mutant OR mutation)) OR "first line"): ti, ab	115,287
8	#6 AND #7	252
9	#8 CDSR	1
10	#8 CCRCT	251

[医学中央雑誌]

#	検索式	文献数
1	黒色腫;薬物療法/TH or 進行メラノーマ/TA or 進行期メラノーマ/TA or 進行期黒色腫/TA or 進行黒色腫/TA or 進行悪性黒色腫/TA or 進行期悪性黒色腫/TA or ハイリスクメラノーマ/TA	5,226
2	(黒色腫/TI or メラノーマ/TI or 黒色がん/TI or 黒色ガン/TI or 黒色癌/TI or 黒色肉腫/TI) and (薬物療法/AL or 薬物治療/TA or 化学療法/TA or 併用療法/TA or 投与/TA or 治療薬/TA or 免疫療法/AL or 抗体療法/TA)	5,265
3	(B-raf 癌原遺伝子タンパク質/TH and "MAP Kinase Kinases"/TH) or ((Encorafenib/TH or encorafenib/TA or encorafenib/TA) and (Binimetinib/TH or binimetinib/TA or binimetinib/TA)) or ((Dabrafenib/TH or dabrafenib/TA or dabrafenib/TA) and (Trametinib/TH or trametinib/TA or trametinib/TA)) or ((Vemurafenib/TH or vemurafenib/TA) and (Cobimetinib/TH or cobimetinib/TA or コビメチニブ/AL))	747
4	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	19,147
5	(細胞傷害性 T 細胞/TH and CTLA-4 抗原/TH) or Ipilimumab/TH or ipilimumab/TA or ipilimumab/TA	2,821
6	(#1 or #2) and (#3 or #4 or #5)	2,595
7	東アジア/TH or アジア人/TH or アジア/TA or 日本/TA or BRAF 変異/TA or 変異陽性/TA or (BRAF/TA and V600/TA and (変異/TA or 陽性/TA)) or 切除不能/TA or 一次治療/TA	454,464
8	#6 and #7	276
9	#8 and PT = 会議録除く and PT = 症例報告・事例除く	128

CQ9 脳転移に対して、BRAF/MEK 阻害薬、抗 PD-1 抗体、抗 PD-1 抗体+抗 CTLA-4 抗体は勧められるか?

推奨文

脳転移に対して、BRAF/MEK 阻害薬, 抗 PD-1 抗体, 抗 PD-1 抗体+抗 CTLA-4 抗体による薬物療法を行うことを提案する.

推奨度	エビデンスレベル	推奨文	
2 (実施することを提案)	C (弱)	(1 回目): 80.0% (16/20)	

投票結果

	1. 「実施する」こと				5. 推奨なし	
	を推奨する	を提案する	とを提案する	とを推奨する		
CQ9	4/20 (20.0%)	16/20 (80.0%)				
(1回目)				総投票数	20 名(棄権	0名)

背景・目的

メラノーマは脳へ転移する頻度の高い悪性腫瘍の一 つであり、転移発生率は43~75%とされる419.420). 脳転 移を有するメラノーマの予後は不良であり、全生存期 間 (overall survival: OS) 中央値は4カ月、1年生存 率は10~20%であった419). 各治療における OS 中央値 は緩和治療で1.7~2.1カ月、局所療法では、放射線療 法で2.5~5.1 カ月, 手術療法で5.5~8.7 カ月, 手術+ 放射線療法で8.9~11.5カ月、殺細胞性抗がん剤による 全身療法では 6.4~9.1 カ月と報告されている 292,420~423). 現在、免疫チェックポイント阻害薬(抗 PD-1 抗体あ るいは抗 PD-1 抗体 + 抗 CTLA-4 抗体) や分子標的薬 (BRAF/MEK 阻害薬)といった新規薬物療法は進行期 メラノーマ患者治療の第一選択薬となった266,325,329,424). ただし, 承認の根拠となった臨床試験では, 脳転移を 有する症例は除外規準に含まれていたため、それらの 患者への新規薬物療法の OS 延長に関する有効性は十 分に検証されていなかった. 近年. 欧米では改めて脳 転移への新規薬物療法の有効性を検討するための臨床 試験が実施されてきた337,341)が、本邦を含む東アジア人 への効果は明らかでない.よって、本CQでは脳転移 に対する新規薬物療法の有効性と、従来行われてきた 手術療法、放射線療法や殺細胞性抗がん剤の有効性と を改めて比較し評価する.

科学的根拠

本 CQ では、脳転移を有するメラノーマを対象(P)とした介入(I)として新規薬物療法である①抗 PD-1 抗体+抗 CTLA-4 抗体(nivolumab + ipilimumab)、② 抗 PD-1 抗体(nivolumab または pembrolizumab)、③ BRAF/MEK 阻害薬(dabrafenib + trametinib または encorafenib + binimetinib)、④ BRAF 阻害薬(dab-

rafenib または vemurafenib), ⑤抗 CTLA-4 抗体(ipilimumab)とした。これらの介入を対照(C)となる経過観察, 化学療法, 放射線療法, 定位手術的照射, 全脳照射, 手術と比較して, アウトカム(O)の評価を行った。アウトカム(O)は OS, 無増悪生存期間(progression-free survival: PFS), 奏効率(objective response rate: ORR), 有害事象, quality of life(カルノフスキーの一般全身状態スコア/カルノフスキー指数), コストと設定した。放射線療法や手術療法と新規薬物療法との併用療法が用いられた試験は除外した。

文献スクリーニングの結果, Nivolumab + ipilimumab と殺細胞性抗がん剤 fotemustine (保険適用なし)を比較検証した第 III 相ランダム化比較試験 (randomized controlled trial: RCT) が 1 編を抽出・採用した (NIBIT-M2, NCT02460068) ³⁴¹⁾. 経過観察, 放射線療法, 手術療法を対照にした試験はなかった. また, 対照群のない RCT 1編(第 II 相試験, ABC, NCT02374242) ³³⁷⁾と前向き観察研究 11編^{296,336,340,425~432)},前向き研究を統合解析したメタアナリシス 1編²⁰⁵⁾も参考に抽出・採用した.

OS については、NIBIT-M2 では nivolumab + ipilimumab 群は対照の fotemustine (保険適用なし) 群と比較して有意に延長した (OS 中央値: 29.2 カ月 vs 8.5 カ月、ハザード比 0.44、95% 信頼区間 0.22~0.87、P=0.017). ABC (NCT02374242) では6カ月生存率が nivolumab + ipilimumab 群で78%、nivolumab 群で68%と報告されている³³⁷⁾. 前向き観察研究では、抗 PD-1 抗体群、抗 CTLA-4 抗体群の OS 中央値はそれぞれ 11.6~17 カ月^{426,427)}、3.7~7 カ月³³⁶⁾であった.分子標的薬については、BRAF/MEK 阻害薬群、BRAF 阻害薬群での OS 中央値はそれぞれ 10.1~24.3 カ月²⁹⁶⁾、3.7~9.6 カ

月^{428,429,432)}であった. 1編のメタアナリシスでは、本 CQ で設定した介入と対照の比較ではないものの, 抗 PD-1 抗体 + 抗 CTLA-4 抗体が抗 PD-1 抗体, BRAF/MEK 阻害薬と比較して OS が有意に延長していた (18 カ月 生存率 64.4% vs 37.5% (95% 信頼区間 24.5~50.1, P= 0.04), vs 39.7% (95% 信頼区間 28.8~50.8, P=0.05))²⁰⁵⁾.

PFS については、前向き観察研究における抗 PD-1 抗体の PFS 中央値は 2 カ月であったものの、12 カ月、24 カ月無増悪生存率はともに 39.1% と報告されており 4260、治療効果が長期に維持されていた。1 編のメタアナリシスでは、本 CQ で設定した介入と対照の比較ではないものの、抗 PD-1 抗体+抗 CTLA-4 抗体が抗 PD-1 抗体、BRAF/MEK 阻害薬と比較して PFS が有意に延長していた(18 カ月無増悪生存率:51.5%. vs 10.8% 95% 信頼区間 3.3~23.5, P<0.001。vs 31.7% 95% 信頼区間 22.5~41.6,P=0.05) 2050.

ORR は前向き観察研究にて、抗PD-1 抗体+抗CTLA-4抗体群, BRAF/MEK 阻害薬でそれぞれ16.7~53.5%、41~75%であり、抗PD-1 抗体群、BRAF 阻害薬群では26%、6.7~90%であった^{296,340,426,428~430,432)}. ただし、ORR がどの程度生存に寄与するかは明らかでない。

有害事象については、報告により多少差はあるものの、grade 3/4 有害事象発生率が、併用療法(BRAF/MEK 阻害薬および抗 PD-1 抗体+抗 CTLA-4 抗体)で高くなる傾向を示した。NIBIT-M2 では nivolumab + ipilimumab、fotemustine(保険適用なし)でそれぞれ30%(8/27 例)、48%(11/23 例)であった³⁴¹⁾。ABC では、nivolumab + ipilimumab、nivolumab で68%、40%であった³³⁷⁾。観察研究では、抗 PD-1 抗体・抗 CTLA-4 抗体で55.4~67%³⁴⁰⁾、抗 PD-1 抗体で17.6~21.7%^{426,427)}、BRAF/MEK 阻害薬で46.1~56.3%²⁹⁶)、BRAF 阻害薬で16.7%~66%^{428,429,432)}、抗 CTLA-4 抗体で13.7~14.3%³³⁶⁾であった。

Quality of life, コストについては, 比較検討した文献はなかった.

解説

メラノーマ脳転移に対する新規薬物療法の有効性について、局所療法(手術療法、放射線療法)と比較し検証した RCT は存在しない。新規薬物療法と殺細胞性抗がん剤の有効性について検証した第 III 相 RCT である NIBIT-M2 では nivolumab + ipilimumab は fotemustine(保険適用なし)よりも有意に OS を延長した3411. 対照群のない第 II 相 RCT の ABC では、6 カ月

生存率が nivolumab + ipilimumab で 78%, nivolumab で 68% と報告されているが、長期予後は明らかでない 3371 . メタアナリシスの解析結果 205 からは、抗 PD-1 抗体 + 抗 CTLA 4 抗体が BRAF/MEK 阻害薬および抗 PD-1 抗体よりも有意に OS および PFS を延長したが、そもそも本 CQ で設定した介入(I)と対照(C)の比較ではなく介入同士の比較であり、解析対象となった観察研究によるデータは非直接性およびバイアスリスクが高い。また、対照群のない前向き観察研究における OS 中央値は、BRAF/MEK 阻害薬および抗 PD-1 抗体で $10.1\sim24.3$ カ月 296 , $11.6\sim17$ カ月 426,427 と有効性を示唆しているが、OS の推定値に非一貫性および不精確がある。そして、NIBIT-M2 以外に介入(I)と対照(C)を直接比較した試験は存在しないため、各治療群間の効果差の有無を証明できない。

パネル会議では、上記のデータ解釈を共有の上で、新規薬物療法と局所療法との比較検討および東アジア人でのエビデンスが不足していることが議論・確認された、結果として、議論後の投票では「介入を弱く推奨する」投票結果となった。

臨床に用いる際の注意点

脳転移メラノーマを対象とした臨床研究・臨床試験には、症候性・無症候性脳転移例の割合がさまざまで、対象となる集団の背景因子が多様である特徴があり、バイアスに注意し結果を評価する必要がある。実際に、症候性脳転移例のデータは少ない。脳転移メラノーマに新規薬物療法と局所療法(手術療法、放射線療法)のいずれを選択すべきかに関するエビデンスは現時点では不足しているにも関わらず、米国臨床腫瘍学会(American Society of Clinical Oncology:ASCO)のガイドラインでは新規薬物療法による治療が推奨されている「120」、一方で、パネル会議では、エビデンス不足を重要視し、「介入を提案する」に留めている。

本邦患者を含む東アジア人を対象とした前向き試験はなかったため、今回採用した文献の成績が東アジア人に必ずしも合致しない可能性がある。Wadaらによる日本人を対象とした観察研究では、nivolumab + ipilimumab、nivolumab または pembrolizumab、分子標的療法の各治療群において OS に有意差はなかったと報告されている⁴³³。ただし、本研究は放射線療法が併用されていることや、治療歴や患者背景にばらつきが大きい対象を後ろ向きに解析した結果であることに注意すべきであり、今回の文献スクリーニングでは採用していない。よって、脳転移を有する東アジア人メ

ラノーマ患者における新規薬物療法の有用性について、どの薬物療法がより有用であるのかについて、高いエビデンスレベルでの検証はされていない。治療選択に際しては、薬剤の有害事象をよく理解し、年齢や全身状態などの患者背景や腫瘍の進展を考慮する.

今後の研究の可能性

脳転移以外の臓器にも転移を有する患者には新規薬物療法が適用されること、欧米ガイドラインでの推奨^{112,434)}を鑑みると、脳転移に対して全身療法を行わずに局所療法(手術療法放射線療法)のみ実施する群を比較対照とした臨床試験はもはや成立しないと想定す

る. また,手術療法については,そもそも手術適応が限られていることもあり,質の高いRCTを新規薬物療法との組み合わせで実施するのは困難である. したがって,今後は放射線療法の薬物療法への上乗せ効果を検証する研究が中心となる可能性が高い. 実際に海外では,脳転移に対する新規薬物療法と局所療法を組み合わせた臨床試験が実施されており,その有用性を示唆する報告が存在する⁴³⁵⁾. しかしながら,併用効果の最適化には,腫瘍の個数や大きさによる層別化,照射のタイミング,定位放射線療法か全脳照射かなどの複数の条件設定が必要である.

文献検索式と文献選択

タイトル	脳転移
CQ9	脳転移に対して,BRAF/MEK 阻害薬,抗 PD-1 抗体,抗 PD-1 抗体 + 抗 CTLA-4 抗体は勧めら
CQ9	れるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT),医学中央雑誌

[PubMed]

#	検索式	文献数
1	"Melanoma/therapy" [MH] OR melanoma* [TI]	98,082
2	"Brain Neoplasms/secondary" [MH] OR ("Brain Neoplasms" [MH] AND "Neoplasm Metastasis" [MH]) OR (brain [TI] AND metasta* [TI])	24,237
3	#1 AND #2	1,775
4	("Proto-Oncogene Proteins B-raf" [MH] AND "Mitogen-Activated Protein Kinase Kinases" [MH]) OR (dabrafenib [NM] AND trametinib [NM]) OR (encorafenib [NM] AND binimetinib [NM]) OR (Vemurafenib [MH] AND cobimetinib [NM]) OR "targeted therap*" [TI]	12,159
5	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti PD1" [TI] OR "anti PD 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	24,284
6	((T-Lymphocytes, Cytotoxic [MH] AND CTLA-4 Antigen [MH]) AND anti [TIAB]) OR "anti CTLA4" [TI] OR "anti CTLA 4" [TI] OR Ipilimumab [MH]	3,384
7	#3 AND (#4 OR #5 OR #6)	220

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti	4,199
2	(((((brain OR intracranial* OR intracerbral*) AND (neoplasm* OR tumor* OR tumour* OR cancer*)) AND (secondar* OR metasta*)) OR "brain metasta"): ti, ab	3,760
3	#1 AND #2	125
4	(((BRAF OR BRAFi OR BRAFis) AND (MEK OR MEKi OR MEKis)) OR (dabrafenib AND trametinib) OR (encorafenib AND binimetinib) OR (Vemurafenib AND cobimetinib) OR (targeted NEXT therap*)): ti, ab	3,740
5	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*) OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembrolizumab): ti, ab	6,455
6	("anti CTLA4" OR "anti CTLA 4" OR (("anticytotoxic t lymphocyte" OR "anticytotoxic t cell lymphocyte" OR "anti cytotoxic t lymphocyte") NEAR/4 4) OR Ipilimumab): ti, ab	1,938
7	#3 AND (OR #4-#6)	86

[医学中央雑誌]

#	検索式	文献数
1	黒色腫;治療/TH or 黒色腫/TA or メラノーマ/TA or melanoma/TA	26,613

2	(脳腫瘍;転移性/TH)or(脳腫瘍/TH and 腫瘍転移/TH)or((脳腫瘍/TA or 頭蓋内腫瘍/TA or 頭蓋窩腫瘍/TA or 脳悪性腫瘍/TA or 脳新生物/TA)and 転移/TA)	13,589
3	#1 and #2	398
4	(B-raf 癌原遺伝子タンパク質/TH and "MAP Kinase Kinases"/TH) or ((Encorafenib/TH or encorafenib/TA or encorafenib/TA) and (Binimetinib/TH or binimetinib/TA or binimetinib/TA)) or ((Dabrafenib/TH or dabrafenib/TA or dabrafenib/TA) and (Trametinib/TH or trametinib/TA or trametinib/TA)) or ((Vemurafenib/TH or vemurafenib/TA) and (Cobimetinib/TH or cobimetinib/TA or コビメチニブ/AL)) or 標的治療/TA	10,669
5	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	19,147
6	(細胞傷害性 T 細胞/TH and CTLA-4 抗原/TH) or Ipilimumab/TH or ipilimumab/TA or ipilimumab/TA	2,821
7	#3 and (#4 or #5 or #6)	103
8	#7 and PT = 会議録除く	54

CQ10 BRAF/MEK 阻害薬や免疫チェックポイント阻害薬に放射線療法を併用することは勧められるか?

推奨文			
局所への効果を目的とした場合、放射線療法の併用を提案する.			
推奨の強さ	エビデンスの強さ	合意率	
2 (実施することを提案)	D (とても弱い)	(1回目):100% (22/22)	

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし	
	を推奨する	を提案する	とを提案する	とを推奨する		
CQ10		100% (22/22)				
(1 回目)				総投票数	22 名 (棄権	()名)

背景・目的

切除不能なメラノーマに対して、薬物療法を実施している途中で、病勢コントロールや症状緩和を目的とした放射線療法が併用される場合がある。近年、放射線療法においてアブスコパル効果の存在が示唆されている。薬物療法の中で特に免疫チェックポイント阻害薬がアブスコパル効果の出現に重要な役割を担っているとの考え方があり、薬物療法と放射線療法との併用の機会が増えつつある。本CQでは、照射部位と非照射部位、それぞれの病勢コントロールにおける放射線療法併用の治療的有用性や、それに伴う生存期間の延長効果に対する意義を評価することを目的とする。

科学的根拠

東アジアの根治切除不能なメラノーマを対象(P)とし、介入(I)を放射線療法と免疫チェックポイント阻害薬ないしBRAF/MEK阻害薬を併用、比較対照(C)を放射線療法併用なしの免疫チェックポイント阻害薬ないしBRAF/MEK阻害薬とした。主要なアウトカム(O)は、全生存期間、無増悪生存期間、奏効率、照射

部位の局所疾患制御,有害事象, quality of life, コストとした.

PICO の介入と対照のとおりの2群間比較のために行ったランダム化比較試験は調べた限り東アジア以外の地域も含めて見つからず、4編の後ろ向き観察研究をまとめたメタアナリシス^{205,206,436,437}、および、9編の後ろ向き観察研究^{435,438~445}を採用し解析した。後ろ向き観察研究のうち、1報が本邦での研究⁴⁴⁵、もう1報は韓国での研究⁴⁴²だった。

全生存期間については、交絡因子の調整(多変量解析 435)、傾向スコアマッチ 439)を行った Franklin ら、de Castro らの後ろ向き観察研究 2 編で放射線療法併用により全生存期間の改善が報告されていた(定位放射線療法:ハザード比 0.213,95% 信頼区間 $0.094\sim0.485$,P<0.001,古典的放射線療法:ハザード比 0.424,95% 信頼区間 $0.210\sim0.855$,P=0.016,ハザード比 0.57,95% 信頼区間 $0.377\sim0.853$,P=0.0034).一方で、その他の後ろ向き研究では放射線療法の併用により全生存期間が延長した報告,短縮した報告,有意差のない報

告が混在していた.

無再発生存期間,奏効率に関してはそれぞれ1つのメタアナリシスで放射線療法併用による有効性が報告されていたが^{436,437)},全生存期間と同様に,報告によって結果は一貫していなかった.

放射線照射部位の局所制御については、脳転移に関するメタアナリシス1編で検討されており、放射線療法による局所制御(脳転移に関する頭蓋内制御)の改善が報告されていた⁴³⁶⁾.

有害事象を評価している報告は後ろ向き観察研究で 2編,メタアナリシスで2編みられたが、いずれも放 射線療法の併用によって有害事象発生率が増加した報 告はなかった^{206,436,441,442)}.また、Mowery らは、放射線 療法の有無による有害事象発生率の差の検討は行って いないが、有害事象は許容範囲内であったと報告して いた⁴⁴³⁾.

コストおよび quality of life について検討を行った 論文はなかった.

解説

採用した文献にて、全生存期間、無再発生存期間、 奏効率の結果は各報告で一貫性がみられなかったが、 採用した文献のほとんどは、対象群の患者背景に違い がみられる観察研究であり、一定の結論を導くことは できない、ただし、多変量解析、傾向スコアマッチ解 析を行った2論文で全生存期間の改善が報告されてお り、放射線療法併用の意義が期待できる結果であった。 一方で、いずれも後ろ向き観察研究ではあるものの、 放射線療法併用により有害事象が増加した報告はみられなかった。

パネル会議では、BRAF/MEK 阻害薬や免疫チェックポイント阻害薬に放射線療法を併用することで予後の改善や治療効果の向上に寄与できると結論付けるまでの結果はないが、有害事象が増えるということも言えない結果であることが議論された。全生存期間、無再発生存期間、奏効率、照射部位の局所疾患制御という主要なアウトカムに対する益と考えられるエビデンスは明らかとは言えないものの、有害事象という害も増えず、かつ、近年では併用放射線療法も寡分割照射により短期間で行われることが多く、その簡便さから

も放射線療法併用を否定する理由もほとんどみられないことがパネル会議で確認・共有された. 以上の議論を踏まえた上で、投票では「介入することを弱く推奨する」に全委員が投票した結果となった.

ただし、介入による主要なアウトカムに対する益が 明らかではないことから、放射線療法の併用は局所へ の相加的な効果を目的とする場合に限るべきとの意見 が多かった。放射線療法併用の提案するのはアブスコ パル効果への期待ではなく、局所への効果を目的とし た場合に限定することとなった。

臨床に用いる際の注意点

BRAF/MEK 阻害薬や免疫チェックポイント阻害薬を投与中の患者に対して放射線療法を併用する場合には、放射線療法実施のために数日~1カ月程度の通院が追加して必要になり、この点を考慮して併用の意義を判断する必要がある。ただし、ごくわずかでも相加的治療効果が期待できるのであれば積極的な併用療法に期待する患者もいると考えられ、有害事象の増加もほとんどないと考えられる放射線療法の併用については患者の価値観も踏まえて十分な説明を行い、理解と納得の上での治療選択が望まれる。

今後の研究の可能性

近年、放射線療法と免疫チェックポイント阻害薬の併用によるアブスコパル効果の存在が指摘されており、盛んに両治療の併用の意義が研究されている。今回採択された論文の中には、放射線療法という局所療法の追加が全身的な有効性に結び付くことを裏付けるエビデンスは認められなかった。現時点では欧米のものも含めてランダム化比較試験はひとつもなく、まずは新規薬物療法への放射線療法併用の意義を、ランダム化比較試験により検証することが求められる。

また、本邦および韓国からは既に後ろ向き研究が報告されているが、前述の通りいずれのアウトカムもその結果が一貫しておらず、人種差による効果差の有無も現時点では不明である。欧米からのランダム化比較試験結果を待つだけでなく、東アジア圏、とくに本邦でランダム化比較試験を行うことによって、東アジア人種や日本人にとっての放射線療法併用の意義を明らかにする臨床試験の実施が望まれる。

文献検索式と文献選択

タイトル	薬物療法と放射線療法の併用
CQ6	BRAF/MEK 阻害薬や免疫チェックポイント阻害薬に放射線療法を併用することは勧められるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT), 医学中央雑誌

[PubMed]

#	検索式	文献数
1	("melanoma/therapy" [MeSH Terms] OR "melanoma" [Title/Abstract]) AND ("melanoma/radiotherapy" [MeSH Terms] OR "Radiotherapy" [MeSH Terms] OR "radiotherap*" [Title] OR "radiation*" [Title]) AND (("Proto-Oncogene Proteins B-raf" [MeSH Terms] AND "Mitogen-Activated Protein Kinase Kinases" [MeSH Terms]) OR ("dabrafenib" [Supplementary Concept] AND "trametinib" [Supplementary Concept]) OR ("encorafenib" [Supplementary Concept]) OR ("vemurafenib" [MeSH Terms] AND "cobimetinib" [Supplementary Concept]) OR "targeted therap*" [Title] OR ("Immune Checkpoint Inhibitors" [MeSH Terms] OR "Immune Checkpoint Inhibitors" [Pharmacological Action] OR "anti PD1" [Title] OR "anti PD 1" [Title] OR "nivolumab" [MeSH Terms] OR "pembrolizumab" [Supplementary Concept]) OR (("t lymphocytes, cytotoxic" [MeSH Terms] AND "ctla 4 antigen" [MeSH Terms] AND "anti" [Title/Abstract]) OR "anti CTLA4" [Title] OR "anti CTLA 4" [Title] OR "ipilimumab" [MeSH Terms]))	242

[The Cochrane library]

#	検索式	文献数
1	((melanoma*: ti) AND ((radiotherap* OR radiation*): ti, ab)) AND ((((BRAF OR BRAFi OR BRAFis) AND (MEK OR MEKi OR MEKis)) OR (dabrafenib AND trametinib) OR (encorafenib AND binimetinib) OR (Vemurafenib AND cobimetinib) OR (targeted NEXT therap*) OR (immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*) OR immunocheckpoint*) OR Nivolumab OR	1
	pembrolizumab OR "anti CTLA4" OR "anti CTLA 4" OR (("anticytotoxic t lymphocyte" OR "anticytotoxic t cell lymphocyte" OR "anti cytotoxic t lymphocyte") NEAR/4 4) OR Ipilimumab): ti, ab)	

[医学中央雑誌]

#	検索式	文献数
1	(((黒色腫;治療/TH or 黒色腫/TA or メラノーマ/TA or melanoma/TA) and (黒色腫;放射線療法/TH or 放射線療法/TH or 放射線/TA or 照射/TA)) and (((B-raf癌原遺伝子タンパク質/TH and "MAP Kinase Kinases"/TH) or ((Encorafenib/TH or encorafenib/TA or encorafenib/TA) and (Binimetinib/TH or binimetinib/TA or binimetinib/TA)) or ((Dabrafenib/TH or dabrafenib/TA or dabrafenib/TA) and (Trametinib/TH or trametinib/TA or trametinib/TA)) or ((Vemurafenib/TH or vemurafenib/TA or vemurafenib/TA) and (Cobimetinib/TH or cobimetinib/TA or コビメチニブ/AL)) or 標的治療/TA) or (免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or pembrolizumab/TA or ipilimumab/TA))) and PT = 会議録除く	123

CQ11 BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で病勢コントロールが得られた際に投薬を中止することは勧められるか?

推奨文				
BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で病勢コントロールが得られた際に投薬を中止しないことを提案する.				
推奨の強さ	エビデンスの強さ	合意率		
3 (実施しないことを提案)	C (弱)	(1回目):85.0% (17/20)		

投票結果

	1. 「実施する」こと	2. 「実施する」こと	3. 「実施しない」こ	4. 「実施しない」こ	5. 推奨なし	
	を推奨する	を提案する	とを提案する	とを推奨する		
CQ11		10.0% (2/20)	85.0% (17/20)	5.0% (1/20)		
(1回目)				総投票数	20 名(棄権	0名)

背景・目的

BRAF/MEK 阻害薬や免疫チェックポイント阻害薬 は根治切除不能なメラノーマに対して標準治療として 使用され, その予後の改善に寄与している^{416,446~448)}. 以 前と比較して病勢コントロールが得られる症例を目に する機会が増えているが、それに伴い、いつまで薬剤 の投与を続けるべきかという疑問が生じる. 特に免疫 チェックポイント阻害薬では投与によりその効果が長 期間持続する可能性が示唆されている. 一例として, nivolumab + ipilimumab 併用療法と ipilimumab 単剤 療法を比較した第 II 相ならびに第 III 相試験の統合解 析では、nivolumab + ipilimumab 併用療法を有害事象 のため4コース完遂できずに投薬中止した群とそれ以 外の群で無増悪生存期間 (progression-free survival: PFS) ならびに全生存期間 (overall survival: OS) に 有意差はなかったと報告されている349). 投薬を中止し ても十分な効果が得られるのであれば、病勢コント ロールが得られた際に中止することで、コストや有害 事象, quality of lifeの面でより患者が利益を享受でき る可能性がある. そのため、本CQでは、BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で病勢コント ロールが得られた際に投薬を中止することが妥当な選 択肢となりえるかどうかに関して、科学的に検証する ことにした.

科学的根拠

BRAF/MEK 阻害薬あるいは免疫チェックポイント阻害薬で加療され病勢コントロールが得られた根治切除不能メラノーマ(P)に対して、投薬の中止を介入(I)、投薬の継続を比較対照(C)とし、主要なアウトカム(O)を OS、PFS、有害事象、コスト、quality of life と設定し、文献検索を行った。なお、主要なアウトカムとして設定は行わなかったが、完全奏効(complete response:CR)が得られたメラノーマに対して無病生存期間(relapse-free survival:RFS)を用いている文献に関しても、PFS に準じて以下に記載した。

BRAF/MEK 阻害薬に関しては、投薬の中止と継続を比較して上記の主要アウトカムを検討した研究は、前向き研究、後ろ向き研究ともになかった。免疫チェックポイント阻害薬については、PFS あるいは RFS に

つき投薬中止群と継続群で比較した2編の後ろ向き観察研究(本邦,海外より各1編)があり本CQの検討に採用した.

PFS, RFS については、本邦からの報告では、抗 PD-1 抗体でCRが得られた皮膚ならびに粘膜メラノー マに対して、投薬継続群 (n=21)、投薬中止群 (うち 免疫チェックポイント阻害薬による治療期間6カ月以 上 (n=25), 6カ月未満 (n=11)) の3群でRFSを比 較している49. その結果、治療期間6カ月以上で投薬 中止した群と投薬継続群で RFS に有意差はなかった (P=0.80). 投薬中止群の内訳では有害事象による中止 が19名、有害事象以外による中止が17名含まれてい たが、異なる中止理由による群間でのRFSに有意差は なかった (P=0.39). 海外からの報告では, 抗 PD-1 抗 体 (n=69). 抗 PD-1 抗体+抗 CTLA-4 抗体 (n=33) あるいは抗 PD-1 抗体 + TVEC (n=2) で 1 年間増悪 のない CR, 部分奏効 (partial response: PR), 安定 (stable disease:SD) の皮膚あるいは原発不明メラ ノーマを対象としている. 1年以内に投薬を中止した 群(選択的中止 (n=9), 有害事象による中止 (n= 26)) と投薬継続群 (n=68) の間で PFS に有意差はな かった⁴⁵⁰⁾.

その他の主要なアウトカムについては、免疫チェックポイント阻害薬投薬中止群と継続群を比較検討した研究はなかった.

解説

投薬中止群と投薬継続群で比較した研究は少なく、 免疫チェックポイント阻害薬に関して投薬中止群と投 薬継続群で PFS あるいは RFS を比較した 2 編の後ろ 向き観察研究が存在するのみであった。 2 編ともに投 薬中止群と投薬継続群で PFS あるいは RFS に有意差 はないという結果であったが、パネル会議での議論で は、本邦報告例では背景因子の詳細が不明で症例数が 少なく、海外報告例では背景因子が調整されておらず、 また中止群に CR 例が多く含まれており、これらのバ イアスリスクを考慮すると投薬中止群と継続群が同等 とするエビデンスとしては弱いと考えられた。一方で、 投薬中止群と投薬継続群を前向きに比較した研究も存 在しなかったため、投薬継続群を強く推奨するエビデ ンスにも欠けていた.上記を踏まえ,投票では,「介入しないこと(投薬を中止しないこと)を弱く推奨する」が推奨決定基準である80%を超える投票結果となった.「介入しないこと強く推奨する」(5.0%),「介入することを弱く推奨する」(10.0%)にも投票はあったが,上記推奨決定基準に従い,「介入しないこと提案する」と推奨を決定した.

臨床に用いる際の注意点

本CQでは「BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で病勢コントロールが得られた際に投薬を中止しないことを提案する」との推奨としたが、BRAF/MEK 阻害薬と免疫チェックポイント阻害薬の投薬中止を完全に同等のものとはみなせない点には注意が必要である.

BRAF/MEK 阻害薬は今回の検証においては、投薬 の中止と投薬の継続を比較した文献は前向き研究、後 ろ向き研究ともに見つからなかった. CR 後に BRAF/ MEK 阻害薬を中止した単群の後ろ向き観察研究が2 編あり、1編では CR 後に BRAF/MEK 阻害薬を中止 した 29 例中 20 例 (69%) が中止後 12 カ月以内に再発 したと報告されている⁴⁵¹. もう1編ではCR後に BRAF/MEK 阻害薬を中止した 26 例中 22 例 (84%) が観察期間中央値19カ月で再発しており、中止しな かった11例に関しては全例CRを維持していたと報告 されている⁴⁵²⁾. 後者の研究では16カ月以上BRAF/ MEK 阻害薬を継続してから中止した例では、BRAF/ MEK 阻害薬継続例と同等の PFS であったと報告され ている.しかし、上記研究はCR例に限ったものであ り、病勢コントロールが得られた際に有害事象以外の 理由で BRAF/MEK 阻害薬を中止することは安易に 勧めることはできず、今後の更なるエビデンスの蓄積 を待ち慎重に検討する必要がある.

一方で免疫チェックポイント阻害薬に関しては後ろ向き観察研究でバイアスリスクはあるものの、2編の研究で投薬中止群と投薬継続群で PFS あるいは RFS に有意差はないという結果を示した449.4500. また病勢コントロールが得られた後に免疫チェックポイント阻害薬を中止した単群の後ろ向き研究は、100 例以上を集積したものが4編あり、1編では抗 PD-1 抗体で病勢コ

ントロールが得られ投薬を中止した324例(CR 90例, PR 190 例, SD 44 例) 中, 中止後 24 カ月経過時点で 病勢が悪化しなかった割合は CR 64%, PR 53%, SD 31%と報告している453). また他の1編では抗PD-1抗 体で病勢コントロールが得られた後、投薬を中止した 177 例 (CR 117 例, PR 44 例, SD 16 例) 中, 中止後 の観察期間中央値18カ月で病勢が悪化しなかった割 合は CR 86%, PR 68%, SD 50% と報告している³⁴⁸⁾. その他の2編では、免疫チェックポイント阻害薬単剤 あるいは併用療法後に CR となり投薬を中止した群 は、PRやSDで投薬を中止した群よりも有意にPFS が延長したと報告している454,455). 後ろ向き研究ではあ るものの、免疫チェックポイント阻害薬は投薬により その効果が長期間持続することが示唆され、中でもCR で中止した群ではその恩恵をより長く受けられる可能 性がある. 以上より免疫チェックポイント阻害薬に関 しては中止が可能な症例もあることが示唆されるが. 投薬を継続した場合と同等の治療効果があるかに関し ては不明であり、今後のエビデンスのさらなる蓄積が 待たれる.

今後の研究の可能性

前述のとおり、免疫チェックポイント阳害薬に関し ては中止後でも治療効果が長く続く例が存在する. し かしながら、投薬を中止しても継続した場合と同等の 治療効果を有することを証明するためには、投薬中止 群と投薬継続群で前向きに比較を行い、投薬中止群が PFS や OS に関して投薬継続群に非劣性であることを 検証する必要がある. またこれまでの後ろ向き観察研 究では、CR後に中止した群の方がPRやSD後に中止 した群よりも病勢が悪化する割合が少ないことが示唆 されている. そのため前向き非劣性試験を行う際には. CR 後に限って投薬中止と継続を比較する、などの条 件設定を行うことも考慮される。その他、投薬を始め てから中止するまでの期間はどれくらいあれば十分 か、有害事象で中止した場合と計画的に中止した場合 では効果差があるのか、奏効判定以外に中止できる基 準として使用できるバイオマーカーはあるのか、など 投薬の中止が可能となる詳細な条件が検証されると, 臨床的により有益であると考えられる.

文献検索式と文献選択

タイトル	病勢コントロールが得られた際の投薬中止
CQ11	BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で病勢コントロールが得られた際に投薬を中止することは勧められるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT),医学中央雑誌

[PubMed]

#	検索式	文献数
1	"Melanoma/therapy" [MH] OR melanoma* [TI]	98,091
2	("Proto-Oncogene Proteins B-raf" [MH] AND "Mitogen-Activated Protein Kinase Kinases" [MH]) OR (dabrafenib [NM] AND trametinib [NM]) OR (encorafenib [NM] AND binimetinib [NM]) OR (Vemurafenib [MH] AND cobimetinib [NM]) OR "targeted therap*" [TIAB]	76,341
3	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti PD1" [TI] OR "anti PD 1" [TIAB] OR "anti programmed death 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	28,806
4	((T-Lymphocytes, Cytotoxic [MH] AND CTLA-4 Antigen [MH]) AND anti [TIAB]) OR "anti CTLA4" [TI] OR "anti CTLA 4" [TI] OR Ipilimumab [MH]	3,384
5	#1 AND (#2 OR #3 OR #4)	7,707
6	"Withholding Treatment" [MH] OR withdraw* [TIAB] OR cessation* [TIAB] OR discontinu* [TIAB] OR "dis continu*" [TIAB] OR stop* [TIAB] OR interrupt* [TIAB] OR "inter rupt*" [TIAB] OR paus* [TIAB]	620,482
7	#5 AND #6	589
8	Case Reports [PT]	2,367,418
9	#7 NOT #8	371
10	((complete [TIAB] OR partial [TIAB]) AND (remission* [TIAB] OR response* [TIAB])) OR "stable disease*" [TIAB] OR "disease stabil*" [TIAB] OR "disease control*" [TIAB] OR "clinical benefit*" [TIAB]	457644
11	#9 AND #10	177

[The Cochrane library]

#	検索式	文献数
1	melanoma*: ti	4199
2	(((BRAF OR BRAFi OR BRAFis) AND (MEK OR MEKi OR MEKis)) OR (dabrafenib AND trametinib) OR (encorafenib AND binimetinib) OR (Vemurafenib AND cobimetinib) OR (targeted NEXT therap*)): ti, ab	3,740
3	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*) OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembrolizumab): ti, ab	6,455
4	("anti CTLA4" OR "anti CTLA 4" OR (("anticytotoxic t lymphocyte" OR "anticytotoxic t cell lymphocyte" OR "anti cytotoxic t lymphocyte") NEAR/4 (1) OR Ipilimumab): ti, ab	1,938
5	#1 AND (OR #2-#4)	1,367
6	(withhold* OR withdraw* OR cessation* OR discontinu* OR (dis NEXT continu*) OR stop* OR interrupt* OR (inter NEXT rupt*) OR paus*): ti, ab	124,601
7	#5 AND #6	288
8	("progression free survival" OR "event free survival" OR "disease free survival" OR "response evaluation criteria solid tumors" OR ((complete OR partial) NEAR (remission* OR response*)) OR (stable NEAR/2 disease*) OR (disease NEAR/2 stabil*) OR (disease NEAR control*) OR (clinical NEAR/2 benefit*)): ti, ab	90,804
9	#7 AND #8	154

[医学中央雑誌]

#	検索式	文献数
1	黒色腫;治療/TH or 黒色腫/TA or メラノーマ/TA or melanoma/TA	26,613
2	(B-raf 癌原遺伝子タンパク質/TH and "MAP Kinase Kinases"/TH) or ((Encorafenib/TH or encorafenib/TA or encorafenib/TA) and (Binimetinib/TH or binimetinib/TA or binimetinib/TA)) or ((Dabrafenib/TH or dabrafenib/TA or dabrafenib/TA) and (Trametinib/TH or trametinib/TA or trametinib/TA)) or ((Vemurafenib/TH or vemurafenib/TA or vemurafenib/TA) and (Cobimetinib/TH or cobimetinib/TA or コビメチニブ/AL)) or 標的治療/TA	10,669
3	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	19,147

4	(細胞傷害性 T 細胞/TH and CTLA-4 抗原/TH) or Ipilimumab/TH or ipilimumab/TA or ipilimumab/TA	2,821
5	#1 and (#2 or #3 or #4)	2.116
	治療の差し控え/TH or 見合わせ/TA or 差し控え/TA or 手控え/TA or 中止/TA or 中断/TA or 休止/TA or 休薬/TH or 休薬/TA	, -
7	#5 and #6	107
8	#7 and PT = 会議録除く and PT = 症例報告・事例除く	15

CQ12 BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で増悪した際に投薬を継続することは勧められるか?

推奨文				
BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で増悪した際に投薬を継続しないよう提案する.				
推奨の強さ エビデンスの強さ 合意率				
3 (実施しないことを提案)	D (とても弱い)	(1 回目):90/0% (18/20)		

投票結果

	1. 「実施する」こと を推奨する	2. 「実施する」こと を提案する		4. 「実施しない」こ とを推奨する	5. 推奨なし
CQ12			90.0% (18/20)	5.0% (1/20)	5.0% (1/20)
(1回目)				総投票数	20 名 (棄権 0 名)

推奨:3D

行わないことを弱く推奨, エビデンスの確定性:と ても弱い

背景・目的

BRAF/MEK 阻害薬や免疫チェックポイント阻害薬 は、殺細胞性抗がん剤とは異なる作用機序を有してい る. BRAF/MEK 阻害薬は、ターゲットとなる遺伝子 変異を有する腫瘍細胞の増殖を抑制する一方、遺伝子 変異のない腫瘍細胞にはほとんど作用しない. メラ ノーマでは、同一個体内の腫瘍細胞における遺伝子変 異の腫瘍内不均一性(heterogeneity)が知られてい る. 臨床的にも. 同一患者であっても病変ごとに BRAF/MEK 阻害薬の効果には差があることがしばし ば経験される. 免疫チェックポイント阻害薬は、がん 免疫に作用する薬剤である. 臨床的な効果発現までに は比較的長い期間を要する一方、ひとたび効果が現れ ると長期にその効果が持続することが知られている. また、治療開始早期には、病変部に炎症などの変化が 加わり、あたかも腫瘍が増大したようにみえる現象 (pseudoprogression) を示す. したがって, これらの 薬剤による治療の継続を判断することにおいて. Response Evaluation Criteria in Solid Tumors (RECIST) 等を用いた従来の治療効果判定のみでは十 分でない可能性がある. 増悪 (progressive disease: PD) 後も、これらの薬剤による治療を継続することの

臨床的意義について評価する.

科学的根拠

BRAF/MEK 阻害薬や免疫チェックポイント阻害薬の治療中に増悪した進行期メラノーマ症例を対象 (P) にして、介入 (I) として BRAF/MEK 阻害薬や免疫チェックポイント阻害薬による治療を継続した群と、対照 (C) として中止した群を比較し、全生存期間 (overall survival: OS)、有害事象、quality of life、コストをアウトカム (O) として差があるかを調べるため、文献検索を行った.

抗 PD-1 抗体による薬物療法で PD と判定されたメラノーマ症例について、PD の判定後にも抗 PD-1 抗体を継続した群と無治療群を比較した論文は 3 編であった。

OS については、Nordstrom らの後ろ向き研究では 抗 PD-1 抗体継続群では、無治療群と比較して延長傾 向であった(BRAF 変異なしグループの OS 中央値: 13.5 カ月 vs 5.8 カ月、有意差解析なし、BRAF 変異あり グループの OS 中央値: 24.6 カ月、有意差検定なし) 4560. Long らの第 III 相臨床試験 CheckMate 066、CheckMate 067 のデータを用いた後ろ向き統合解析でも、同様に抗 PD-1 抗体継続群で OS は延長傾向だった(2 年生存率: 59% vs 25%、有意差検定なし) 4570. Beaver らの後ろ向き研究でも同様の傾向だった(OS中央値: 24.4 カ月 vs 11.2 カ月、有意差検定なし) 4580.

ただし、後ろ向き観察研究の結果であることを考慮すると、抗 PD-1 抗体を継続した群に比較的病状の良い症例や特定の病型が含まれていたバイアスが排除できず、また有意差検定も行われていなかった.

抗 PD-1 抗体継続群と他の免疫チェックポイント阻 害薬や殺細胞性抗がん剤に変更した群を比較した論文 2編についても検討した. OS については、Mori らの 末端メラノーマを対象とした後ろ向き研究では、一次 治療としての抗 PD-1 抗体使用時を起点とした各二次 治療のOSを報告している. 抗PD-1 抗体継続群と各薬 物療法変更群(抗PD-1 抗体+抗CTLA-4 抗体, 抗 CTLA-4 抗体, 殺細胞性抗がん剤)と比較して有意差 はなかった (OS 中央値: 22.8 カ月 vs 26.2 カ月 (P= 0.93), vs 15.2 カ 月 (P>0.99), vs 13.1 カ 月 (P> 0.99))³⁷⁷⁾. Pinto らの後ろ向き研究では, 二次治療開始 時を起点とした OS を検討しているが、同様に抗 PD-1 抗体継続群と各薬物療法変更群(抗PD-1 抗体+抗 CTLA-4 抗体、抗 CTLA-4 抗体) との間に有意差はな かった (OS 中央値: 7.9 カ月 vs 6.5 カ月 vs 5.7 カ月, 有意差検定なし)459.いずれも後ろ向き観察研究の結果 であり、バイアスの排除はできないものの、抗 PD-1 抗体継続でも、OS に対する多大な不利益は生じない ことが示唆された.

一方, BRAF 阻害薬増悪後も継続した群(BRAF 阻害薬継続群)と無治療群を比較した後ろ向き研究が2編あった.

OS については、Scholtens らの後ろ向き研究では、BRAF 阻害薬継続群は無治療群を比較で有意に延長がみられた(OS 中央値:12.8 カ月 vs 6.3 カ月、 $P=0.0001)^{460}$.

BRAF 阻害薬継続群と薬物療法変更群を比較した論 文が1編あった. OS については Chan らの複数前向き 試験の後ろ向き統合解析にて、BRAF 阻害薬継続群で 有意に延長した(17.8 カ月 vs 7.0 カ月、P<0.001)⁴⁶¹.

しかし、抗 PD-1 抗体と同じく、後ろ向き観察研究の結果であることを考慮すると、投薬継続群に比較的病状の良い症例が含まれていたバイアスが排除できず、かつ、現在の進行期治療では標準治療として使用されない BRAF 阻害薬単剤が一次治療であった.

抗 CTLA-4 抗体が奏効し、その後 PD と判定された メラノーマ症例に、抗 CTLA-4 抗体を継続した場合の 奏効率は 33.3% であった⁴⁶²⁾. 抗 CTLA-4 抗体を継続す ることで奏効率が改善する可能性が示唆されたが、比 較対照群が設定されておらず、結果の臨床的意義は非 常に限定的であった.

有害事象, quality of life, コストについては, 介入 群と対照群を比較した研究はなかった.

解説

進行期メラノーマにおいて、BRAF/MEK 阻害薬や 免疫チェックポイント阻害薬による薬物療法で PD の 判定後に、投薬継続群とそれ以外の群を比較した研究 は、いずれも観察研究のみであった、そのため、投薬 継続が行われた例への選択バイアスが排除できず、有 意差検定も行われていない研究もあったことから, 対 照群との正確な比較は困難であった. また. 対照群の 治療内容や治療効果の評価項目が研究ごとに異なって いたため、研究間での比較および研究結果の統合はで きなかった.パネル会議での議論として、現状のがん 治療では、PD の判定後には他治療へ変更することが 一般的であることを重視すると、BRAF/MEK 阻害薬 や免疫チェックポイント阻害薬投薬に関して、PD の 判定後にも投薬を継続することの新たな臨床的意義を 見出すことはできないとの見解が多かった. 一方で, 進行期メラノーマに対する治療選択肢が限られている こと、投薬を継続することで急激な腫瘍の増大が抑制 される可能性があること、限定的ではあるが OS の延 長が期待できる症例が経験されること、を考慮する必 要があるとの意見もあった. 論文検索の結果、PDの 判定後に BRAF/MEK 阻害薬や免疫チェックポイン ト阻害薬の投薬を継続することで、予後に対する多大 なデメリットは見いだせなかったことなどを勘案する と、PD の判定後にこれらの薬剤の投薬継続を強く妨 げるものではないとの意見もあった. 以上の議論のう えで投票を行ったところ、「介入しないことを弱く推 奨」する投票結果となった.

臨床に用いる際の注意点

投薬継続の是非を検討する際には、患者の全身状態を考慮し、治療関連有害事象に対する忍容性について慎重に判断する。また、治療継続に際して患者が負担しなければならない時間的・経済的コストと、治療によって得られる利益のバランスを吟味し、漫然と投薬を継続することは慎むべきである。ただし、免疫チェックポイント阻害薬では、効果の発現に時間を要すること、pseudoprogressionが起こり得ることなどを念頭に置き、治療開始早期の効果判定のみで、治療中止を決定することは避けたほうがよい。NCCN ガイドライン330では、治療継続に困難を伴わない症例に対して、6~10週間の治療継続の妥当性に言及している。

今後の研究の可能性

高いエビデンスを構築するためには、ランダム化比較試験の実施が欠かせない。さらに、本邦での臨床導入に際しては、東アジア人もしくは日本人を対象にした研究結果が必要である。BRAF/MEK 阻害薬や免疫

チェックポイント阻害薬による治療増悪後の治療の有用性を多角的に検討するためには、治療効果だけでなく、患者の quality of life、治療関連有害事象、医療コストなども加味することが望まれる.

文献検索式と文献選択

タイトル	PD 後の投薬継続
CQ12	BRAF/MEK 阻害薬や免疫チェックポイント阻害薬で増悪した際に投薬を継続することは勧め
CQ12	られるか?
データベース	PubMed, The Cochrane Library (CCSR, CCRCT),医学中央雑誌

[PubMed]

#	検索式	文献数
1	("Melanoma/therapy" [MH] OR melanoma* [TI]) AND ("Disease Progression" [MH] OR "disease progressi*" [TIAB])	3,498
2	("Proto-Oncogene Proteins B-raf" [MH] AND "Mitogen-Activated Protein Kinase Kinases" [MH]) OR (dabrafenib [NM] AND trametinib [NM]) OR (encorafenib [NM] AND binimetinib [NM]) OR (Vemurafenib [MH] AND cobimetinib [NM]) OR "braf inhibit*" [TIAB]	3,991
3	"Immune Checkpoint Inhibitors" [MH] OR "Immune Checkpoint Inhibitors" [PA] OR "anti PD1" [TI] OR "anti PD 1" [TI] OR Nivolumab [MH] OR pembrolizumab [NM]	24,303
4	((T-Lymphocytes, Cytotoxic [MH] AND CTLA-4 Antigen [MH]) AND anti [TIAB]) OR "anti CTLA4" [TI] OR "anti CTLA 4" [TI] OR Ipilimumab [MH]	3,384
5	#1 AND (#2 OR #3 OR #4)	486
6	Retreatment [MH: NOEXP] OR retreatment* [TIAB] OR rechalleng* [TIAB] OR reload* [TIAB] OR "beyond progression" [TIAB: ~1] OR continu* [TIAB] OR consecut* [TIAB] OR subsequent* [TIAB]	2,710,489
7	#5 AND #6	135

[The Cochrane Library]

_		
#	検索式	文献数
1	(melanoma*: ti) AND (progressi*: ti, ab)	1,217
2	(((BRAF OR BRAFi OR BRAFis) AND (MEK OR MEKi OR MEKis)) OR (dabrafenib AND trametinib) OR (encorafenib AND binimetinib) OR (Vemurafenib AND cobimetinib) OR (braf NEAR/2 inhibit*)): ti, ab	666
3	((immune NEXT checkpoint*) OR immunecheckpoint* OR (immuno NEXT checkpoint*) OR immunocheckpoint* OR (immunocheck NEXT point*) OR Nivolumab OR pembrolizumab): ti, ab	6,455
4	("anti CTLA4" OR "anti CTLA 4" OR (("anticytotoxic t lymphocyte" OR "anticytotoxic t cell lymphocyte" OR "anti cytotoxic t lymphocyte") NEAR/4 (1) OR Ipilimumab): ti, ab	1,938
5	#1 AND (OR #2-#4)	704
6	(retreatment* OR rechalleng* OR reload* OR (beyond NEAR/2 progression) OR continu* OR consecut* OR subsequent*): ti, ab	265,193
7	#5 AND #6	224

[医学中央雑誌]

#	検索式	文献数
1	(黒色腫;治療/TH or 黒色腫/TA or メラノーマ/TA or melanoma/TA) and 病勢悪化/TH	73
	(B-raf 癌原遺伝子タンパク質/TH and "MAP Kinase Kinases"/TH) or((Encorafenib/TH or	
	encorafenib/TA or encorafenib/TA) and (Binimetinib/TH or binimetinib/TA or binimetinib/	
2	TA)) or ((Dabrafenib/TH or dabrafenib/TA or dabrafenib/TA) and (Trametinib/TH or	747
	trametinib/TA or trametinib/TA)) or ((Vemurafenib/TH or vemurafenib/TA or vemu-	
	rafenib/TA) and (Cobimetinib/TH or cobimetinib/TA or コビメチニブ/AL))	
2	免疫チェックポイント阻害剤/TH or Nivolumab/TH or nivolumab/TA or nivolumab/TA or	19.147
5	Pembrolizumab/TH or pembrolizumab/TA or pembrolizumab/TA or ペンブロリズマブ/TA	19,147

4	(細胞傷害性 T 細胞/TH and CTLA-4 抗原/TH) or Ipilimumab/TH or ipilimumab/TA or ipilimumab/TA	2,821
5	#1 and (#2 or #3 or #4)	33
6	#5 and PT = 会議録除く	16

수 해

- 1) 斎田俊明, 真鍋 求, 竹之内辰也ほか:皮膚悪性腫瘍診療ガイドライン, 日皮会誌, 2007; 117: 1855-1925.
- 土田哲也,古賀弘志,字原 久ほか:日本皮膚科学会ガイドライン 皮膚悪性腫瘍ガイドライン.日皮会誌,2015; 125:5-75.
- 3) 中村泰大, 浅井 純, 井垣 浩ほか:皮膚悪性腫瘍ガイドライン第3版メラノーマ診療ガイドライン2019, 日皮会誌, 2019; 129: 1759-1843.
- Nakamura Y, Asai J, Igaki H, et al: Japanese Dermatological Association Guidelines: Outlines of guidelines for cutaneous melanoma 2019, J Dermatol, 2020; 47: 89–103.
- Gershenwald JE, Scolyer RA: Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond, Ann Surg Oncol, 2018; 25: 2105–2110.
- Minds 診療ガイドライン作成マニュアル編集委員会: Minds 診療ガイドライン作成マニュアル 2020 ver.3.0, 2020, 1-433.
- 7) 日本医学会:診療ガイドライン策定参加資格基準ガイダンス、2017, 1-18.
- Fujisawa Y, Yoshikawa S, Minagawa A, et al: Clinical and histopathological characteristics and survival analysis of 4594 Japanese patients with melanoma, Cancer medicine, 2019; 8: 2146–2156.
- 9) 藤澤康弘, 大塚藤男:皮膚悪性腫瘍 (第2版) 上-基礎と 臨床の最新研究動向 メラノーマ メラノーマの疫学, 日本臨床 増刊 皮膚悪性腫瘍 (上), 2021; 79: 13-18.
- Gray-Schopfer V, Wellbrock C, Marais R: Melanoma biology and new targeted therapy, Nature, 2007; 445: 851–857.
- 11) 矢島伊知朗:皮膚悪性腫瘍-基礎と臨床の最新研究動向 悪性黒色腫 悪性黒色腫の分子生物学 悪性黒色腫の発癌 機序(紫外線などの環境因子との関係), 日本臨床 増刊 皮膚悪性腫瘍, 2013; 71: 107-111.
- 12) Curtin JA, Fridlyand J, Kageshita T, et al: Distinct sets of genetic alterations in melanoma, N Engl J Med, 2005; 353: 2135–2147.
- Bastian BC: The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia, Annu Rev Pathol, 2014; 9: 239–271.
- 14) 芦田敦子: メラノーマの遺伝子異常, 日皮会誌, 2018; 128: 1301-1308.
- 15) Elder DE, Bastian BC, Cree IA, Massi D, Scolyer RA: The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway, Arch Pathol Lab Med, 2020; 144: 500– 522.

- 16) Ashida A, Uhara H, Kiniwa Y, et al: Assessment of BRAF and KIT mutations in Japanese melanoma patients, J Dermatol Sci, 2012; 66: 240–242.
- 17) 芦田敦子:皮膚悪性腫瘍―基礎と臨床の最新研究動向―悪性黒色腫 悪性黒色腫の分子生物学 分子生物学 チロシンキナーゼ KIT, 日本臨床 増刊 皮膚悪性腫瘍, 2013; 71: 134-138.
- 18) Brierley J, Gospodarowicz M, Wittekind C: TNM悪性腫 瘍の分類, 第8版, 日本語版, 金原出版, 2017, 142–145.
- 19) Fujisawa Y, Yoshikawa S, Minagawa A, et al: Classification of 3097 patients from the Japanese melanoma study database using the American joint committee on cancer eighth edition cancer staging system, J Dermatol Sci, 2019: 94: 284–289.
- 20) Ivry GB, Ogle CA, Shim EK: Role of sun exposure in melanoma, Dermatol Surg, 2006; 32: 481–492.
- 21) Dennis LK, Vanbeek MJ, Beane Freeman LE, Smith BJ, Dawson DV, Coughlin JA: Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis, Ann Epidemiol, 2008; 18: 614–627.
- 22) Minagawa A, Omodaka T, Okuyama R: Melanomas and Mechanical Stress Points on the Plantar Surface of the Foot, N Engl J Med, 2016; 374: 2404–2406.
- 23) Kubica AW, Brewer JD: Melanoma in immunosuppressed patients, Mayo Clin Proc, 2012; 87: 991–1003.
- 24) 大西誉光:皮膚悪性腫瘍―基礎と臨床の最新研究動向― 悪性黒色腫 悪性黒色腫の危険因子 宿主因子, 日本臨 床 増刊 皮膚悪性腫瘍, 2013; 71: 81-84.
- Rhodes AR, Melski JW: Small congenital nevocellular nevi and the risk of cutaneous melanoma, J Pediatr, 1982; 100: 219–224.
- 26) McCarthy JT: ABCDs of Melanoma, Cutis, 1995; 56: 313.
- 27) Grob JJ, Bonerandi JJ: The 'ugly duckling' sign: identification of the common characteristics of nevi in an individual as a basis for melanoma screening, Arch Dermatol, 1998; 134: 103–104.
- 28) Dinnes J, Deeks JJ, Chuchu N, et al: Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults, Cochrane Database Syst Rev, 2018; 12: CD011902.
- Kittler H, Pehamberger H, Wolff K, Binder M: Diagnostic accuracy of dermoscopy, Lancet Oncol, 2002; 3: 159–165.
- 30) Carrera C, Marchetti MA, Dusza SW, et al: Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma: A Web-Based International Dermoscopy Society Study, JAMA Dermatol, 2016; 152: 798–806.
- 31) Swetter SM, Tsao H, Bichakjian CK, et al: Guidelines of care for the management of primary cutaneous melanoma, J Am Acad Dermatol, 2019; 80: 208–250.

- 32) Garbe C, Amaral T, Peris K, et al: European consensusbased interdisciplinary guideline for melanoma. Part 2: Treatment-Update 2022, Eur J Cancer, 2022; 170: 256– 284.
- NCCN. Clinical Practice Guidelines in Oncology. Melanoma: Cutaneous, Version 3. 2023.
- 34) Martin RCG, Scoggins CR, Ross MI, et al: Is incisional biopsy of melanoma harmful? Am J Surg, 2005; 190: 913–917.
- 35) Pflugfelder A, Weide B, Eigentler TK, et al: Incisional biopsy and melanoma prognosis: Facts and controversies, Clin Dermatol, 2010; 28: 316–318.
- 36) Bong JL, Herd RM, Hunter JAA, Grp SM: Incisional biopsy and melanoma prognosis, J Am Acad Dermatol, 2002; 46: 690–694.
- 37) Gannon CJ, Rousseau DL, Ross MI, et al: Accuracy of lymphatic mapping and sentinel lymph node biopsy after previous wide local excision in patients with primary melanoma, Cancer, 2006; 107: 2647–2652.
- 38) Elmore JG, Barnhill RL, Elder DE, et al: Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study, BMJ, 2017; 357: j2813.
- 39) Xing Y, Bronstein Y, Ross MI, et al: Contemporary Diagnostic Imaging Modalities for the Staging and Surveillance of Melanoma Patients: a Meta-analysis, J Natl Cancer Inst, 2011; 103: 129–142.
- 40) Yancovitz M, Finelt N, Warycha MA, et al: Role of radiologic Imaging at the time of initial diagnosis of stage T1b-T3b melanoma, Cancer, 2007; 110: 1107–1114.
- Hafner J, Schmid MH, Kempf W, et al: Baseline staging in cutaneous malignant melanoma, Br J Dermatol, 2004; 150: 677–686.
- 42) Morton RL, Craig JC, Thompson JF: The Role of Surveillance Chest X-Rays in the Follow-Up of High-Risk Melanoma Patients, Ann Surg Oncol, 2009; 16: 571–577.
- 43) Vermeeren L, van der Ent FW, Hulsewé KW: Is There an Indication for Routine Chest X-Ray in Initial Staging of Melanoma? J Surg Res, 2011; 166: 114–119.
- 44) Bastiaannet E, Uyl-de Groot CA, Brouwers AH, et al: Cost-effectiveness of Adding FDG-PET or CT to the Diagnostic Work-up of Patients With Stage III Melanoma, Ann Surg, 2012; 255: 771–776.
- 45) Gershenwald JE, Scolyer RA, Hess KR, et al: Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual, CA Cancer J Clin, 2017; 67: 472–492.
- 46) Bradford PT, Freedman DM, Goldstein AM, Tucker MA: Increased risk of second primary cancers after a diagnosis of melanoma, Arch Dermatol, 2010; 146: 265– 272
- 47) Beroukhim K, Pourang A, Eisen DB: Risk of second primary cutaneous and noncutaneous melanoma after cutaneous melanoma diagnosis: A population-based study, J Am Acad Dermatol, 2020; 82: 683–689.
- 48) Greene MH: The hereditary variant of malignant mela-

- noma, Human malignant melanoma, 1979.
- 49) Ford D, Bliss JM, Swerdlow AJ, et al: Risk of cutaneous melanoma associated with a family history of the disease. The International Melanoma Analysis Group (IMAGE), Int J Cancer, 1995; 62: 377–381.
- 50) Read J, Wadt KA, Hayward NK: Melanoma genetics, J Med Genet, 2016; 53: 1–14.
- 51) Goldstein AM, Chan M, Harland M, et al: Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents, J Med Genet, 2007; 44: 99–106.
- 52) Goldstein AM, Struewing JP, Fraser MC, Smith MW, Tucker MA: Prospective risk of cancer in CDKN2A germline mutation carriers, J Med Genet, 2004; 41: 421– 424.
- 53) Garbe C, Amaral T, Peris K, et al: European consensusbased interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022, Eur J Cancer, 2022; 170: 236– 255
- 54) Hoffmann K, Jung J, el Gammal S, Altmeyer P: Malignant melanoma in 20-MHz B scan sonography, Dermatology, 1992; 185: 49–55.
- 55) Lassau N, Lamuraglia M, Koscielny S, et al: Prognostic value of angiogenesis evaluated with high-frequency and colour Doppler sonography for preoperative assessment of primary cutaneous melanomas: correlation with recurrence after a 5 year follow-up period, Cancer Imaging, 2006; 6: 24–29.
- 56) Machet L, Belot V, Naouri M, et al: Preoperative measurement of thickness of cutaneous melanoma using high-resolution 20 MHz ultrasound imaging: A monocenter prospective study and systematic review of the literature, Ultrasound Med Biol, 2009; 35: 1411–1420.
- 57) Shannon AB, Sharon CE, Straker RJ, 3rd, et al: Sentinel lymph node biopsy in patients with T1a cutaneous malignant melanoma: A multicenter cohort study, J Am Acad Dermatol, 2023; 88: 52–59.
- 58) Yılmaz H, Orhan E, Şahin E, Olguner AA, Arpacı E: Efficacy of positron emission tomography and computed tomography in clinical staging of cutaneous malignant melanoma, Dermatol Ther, 2020; 33: e13304.
- 59) Faries MB, Thompson JF, Cochran AJ, et al: Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma, N Engl J Med, 2017; 376: 2211–2222.
- 60) Morton DL, Thompson JF, Cochran AJ, et al: Final trial report of sentinel-node biopsy versus nodal observation in melanoma, N Engl J Med, 2014; 370: 599–609.
- 61) Leiter U, Stadler R, Mauch C, et al: Complete lymph node dissection versus no dissection in patients with sentinel lymph node biopsy positive melanoma (DeCOG-SLT): a multicentre, randomised, phase 3 trial, Lancet Oncol, 2016; 17: 757–767.
- 62) Matsubara J, Mukai K, Kondo T, et al: First-Line Genomic Profiling in Previously Untreated Advanced Solid Tumors for Identification of Targeted Therapy Opportunities, JAMA Netw Open, 2023; 6: e2323336.

- 63) Bassères N, Grob JJ, Richard MA, et al: Cost-effectiveness of surveillance of stage I melanoma, A retrospective appraisal based on a 10-year experience in a dermatology department in France. Dermatology, 1995; 191: 199–203.
- 64) Solassol J, Du-Thanh A, Maudelonde T, Guillot B: Serum proteomic profiling reveals potential biomarkers for cutaneous malignant melanoma, Int J Biol Markers, 2011; 26: 82–87.
- 65) Bouwhuis MG, Suciu S, Kruit W, et al: Prognostic value of serial blood S100B determinations in stage IIB-III melanoma patients: a corollary study to EORTC trial 18952, Eur J Cancer, 2011; 47: 361–368.
- 66) Hofmann MA, Gussmann F, Fritsche A, et al: Diagnostic value of melanoma inhibitory activity serum marker in the follow-up of patients with stage I or II cutaneous melanoma, Melanoma Res, 2009; 19: 17–23.
- 67) Hofmann MA, Schicke B, Fritsch A, et al: Impact of lymph node metastases on serum level of melanoma inhibitory activity in stage III melanoma patients, J Dermatol 2011; 38: 880–886.
- 68) Kluger HM, Hoyt K, Bacchiocchi A, et al: Plasma markers for identifying patients with metastatic melanoma, Clin Cancer Res, 2011; 17: 2417–2425.
- 69) Smit LH, Nieweg OE, Korse CM, Bonfrer JM, Kroon BB: Significance of serum S-100B in melanoma patients before and after sentinel node biopsy, J Surg Oncol, 2005; 90: 66–69; discussion 69–70.
- 70) Molina R, Navarro J, Filella X, Castel T, Ballesta AM: S-100 protein serum levels in patients with benign and malignant diseases: false-positive results related to liver and renal function, Tumour Biol, 2002; 23: 39–44.
- 71) Tsoporis JN, Mohammadzadeh F, Parker TG: S100B: a multifunctional role in cardiovascular pathophysiology, Amino Acids, 2011; 41: 843–847.
- 72) Ribero S, Podlipnik S, Osella-Abate S, et al: Ultrasoundbased follow-up does not increase survival in early-stage melanoma patients: A comparative cohort study, Eur J Cancer, 2017; 85: 59–66.
- 73) Markovic SN, Erickson LA, Rao RD, et al: Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis, Mayo Clin Proc, 2007; 82: 364–380.
- 74) Seth R, Agarwala SS, Messersmith H, et al: Systemic Therapy for Melanoma: ASCO Guideline Update, J Clin Oncol, 2023; 41: 4794–4820.
- 75) Veronesi U, Cascinelli N, Adamus J, et al: Thin stage I primary cutaneous malignant melanoma. Comparison of excision with margins of 1 or 3 cm, N Engl J Med, 1988; 318: 1159–1162.
- 76) Veronesi U, Cascinelli N: Narrow excision (1-cm margin). A safe procedure for thin cutaneous melanoma, Arch Surg, 1991; 126: 438–441.
- 77) Cascinelli N: Margin of resection in the management of primary melanoma, Semin Surg Oncol, 1998; 14: 272– 275.

- 78) Ringborg U, Andersson R, Eldh J, et al: Resection margins of 2 versus 5 cm for cutaneous malignant melanoma with a tumor thickness of 0.8 to 2.0 mm: randomized study by the Swedish Melanoma Study Group, Cancer, 1996; 77: 1809–1814.
- 79) Cohn-Cedermark G, Rutqvist LE, Andersson R, et al: Long term results of a randomized study by the Swedish Melanoma Study Group on 2-cm versus 5-cm resection margins for patients with cutaneous melanoma with a tumor thickness of 0.8-2.0 mm, Cancer, 2000; 89: 1495–1501.
- 80) Balch CM, Urist MM, Karakousis CP, et al: Efficacy of 2-cm surgical margins for intermediate-thickness melanomas (1 to 4 mm). Results of a multi-institutional randomized surgical trial, Ann Surg, 1993; 218: 262–267; discussion 267–269.
- 81) Karakousis CP, Balch CM, Urist MM, Ross MM, Smith TJ, Bartolucci AA: Local recurrence in malignant melanoma: Long-term results of the multiinstitutional randomized surgical trial, Ann Surg Oncol, 1996; 3: 446– 452.
- 82) Balch CM, Soong S, Smith T, et al: Long-term results of a prospective surgical trial comparing 2 cm vs. 4 cm excision margins for 740 patients with 1-4 mm melanomas, Ann Surg Oncol, 2001; 8: 101–108.
- 83) Khayat D, Rixe O, Martin G, et al: Surgical margins in cutaneous melanoma (2 cm 5 cm for lesions measuring less than 2.1-mm thick)-: Long-term results of a large European multicentric phase III study, Cancer, 2003; 97: 1941–1946.
- 84) Gillgren P, Drzewiecki KT, Niin M, et al: 2-cm versus 4-cm surgical excision margins for primary cutaneous melanoma thicker than 2 mm: a randomised, multicentre trial, Lancet, 2011; 378: 1635–1642.
- 85) Utjés D, Malmstedt J, Teras J, et al: 2-cm versus 4-cm surgical excision margins for primary cutaneous melanoma thicker than 2 mm: long-term follow-up of a multicentre, randomised trial, Lancet, 2019; 394: 471–477.
- 86) Thomas JM, Newton-Bishop J, A'Hern R, et al: Excision margins in high-risk malignant melanoma, N Engl J Med, 2004; 350: 757–766.
- 87) Hayes AJ, Maynard L, Coombes G, et al: Wide versus narrow excision margins for high-risk, primary cutaneous melanomas: long-term follow-up of survival in a randomised trial, Lancet Oncol, 2016; 17: 184–192.
- 88) Rossi AJ, Verbus EA, Faries MB, et al: A Phase III, Multicenter, Randomized Controlled Trial Investigating 1-cm Versus 2-cm Surgical Excision Margins for Stage II Primary Cutaneous Melanoma (MelMarT-II), Ann Surg Oncol, 2022; 29: 4050–4051.
- 89) Elshot YS, Tio DCKS, van Haersma-de WA, et al: Lentigo maligna (melanoma): A systematic review and meta-analysis on surgical techniques and presurgical mapping by reflectance confocal microscopy, J Eur Acad Dermatol Venereol, 2023; 37: 871–883.
- 90) Friedman EB, Scolyer RA, Williams GJ, Thompson JF:

- Melanoma In Situ: A Critical Review and Re-Evaluation of Current Excision Margin Recommendations, Adv Ther, 2021; 38: 3506–3530.
- 91) Kunishige JH, Brodland DG, Zitelli JA: Surgical margins for melanoma in situ, Journal of the American Academy of Dermatology, 2012; 66: 438–444.
- 92) Michielin O, van Akkooi A, Lorigan P, et al: ESMO consensus conference recommendations on the management of locoregional melanoma: under the auspices of the ESMO Guidelines Committee, Ann Oncol, 2020; 31: 1449–1461.
- 93) Grotz TE, Glorioso JM, Pockaj BA, Harmsen WS, Jakub JW: Preservation of the deep muscular fascia and locoregional control in melanoma, Surgery, 2013; 153: 535–541.
- 94) Ito T, Kaku-Ito Y, Wada-Ohno M, Furue M: Narrow-Margin Excision for Invasive Acral Melanoma: Is It Acceptable? J Clin Med, 2020; 9: 2266.
- 95) Lee KT, Kim EJ, Lee DY, Kim JH, Jang KT, Mun GH: Surgical excision margin for primary acral melanoma, J Surg Oncol, 2016: 114: 933–939.
- 96) Sun W, Xu Y, Qu X, et al: Surgical resection margin for T3-T4 primary acral melanoma: a multicenter retrospective cohort study, Arch Dermatol Res, 2023; 315: 2305–2312.
- 97) Ito T, Hashimoto H, Kaku-Ito Y, Tanaka Y, Nakahara T: Nail Apparatus Melanoma: Current Management and Future Perspectives, J Clin Med, 2023; 12: 2203.
- 98) Oh BH, Lee S, Park JW, et al: Risk of recurrence of nail unit melanoma after functional surgery versus amputation, J Am Acad Dermatol, 2023; 88: 1017–1023.
- 99) Le M, Gabrielli S, Zloty D: Mohs Micrographic Surgery Is Equivalent to Nail Unit Excision or Amputation for Melanoma In Situ of the Nail Unit: A Systematic Review and Meta-Analysis, Dermatol Surg, 2023; 49: 755-758.
- 100) Elshot YS, Zupan-Kajcovski B, Ouwerkerk W, et al: A cohort analysis of surgically treated primary head and neck lentigo maligna (melanoma): Prognostic value of melanoma subtype and new insights in the clinical value of guideline adherence, Eur J Surg Oncol, 2023; 49: 818–824.
- 101) Ran NA, Veerabagu S, Miller CJ, Elenitsas R, Chu EY, Krausz AE: Local Recurrence Rates After Excision of Desmoplastic Melanoma: A Systematic Review and Meta-Analysis, Dermatol Surg, 2023; 49: 330–337.
- 102) Deutsch GB, Flaherty DC, Kirchoff DD, et al: Association of Surgical Treatment, Systemic Therapy, and Survival in Patients With Abdominal Visceral Melanoma Metastases, 1965-2014: Relevance of Surgical Cure in the Era of Modern Systemic Therapy, JAMA Surg, 2017; 152: 672–678.
- 103) Wright FC, Kellett S, Hong NJL, et al: Locoregional management of in-transit metastasis in melanoma: an Ontario Health (Cancer Care Ontario) clinical practice guideline, Curr Oncol, 2020; 27: e318–e325.

- 104) Harpole DH, Jr, Johnson CM, Wolfe WG, George SL, Seigler HF: Analysis of 945 cases of pulmonary metastatic melanoma, J Thorac Cardiovasc Surg, 1992; 103: 743– 748; discussion 748–750.
- 105) Tafra L, Dale PS, Wanek LA, Ramming KP, Morton DL: Resection and adjuvant immunotherapy for melanoma metastatic to the lung and thorax, J Thorac Cardiovasc Surg, 1995; 110: 119–128; discussion 129.
- 106) Leo F, Cagini L, Rocmans P, et al: Lung metastases from melanoma: when is surgical treatment warranted? Br J Cancer. 2000: 83: 569–572.
- 107) Neuman HB, Patel A, Hanlon C, Wolchok JD, Houghton AN, Coit DG: Stage-IV melanoma and pulmonary metastases: factors predictive of survival, Ann Surg Oncol, 2007; 14: 2847–2853.
- 108) Schuhan C, Muley T, Dienemann H, Pfannschmidt J: Survival after pulmonary metastasectomy in patients with malignant melanoma, Thorac Cardiovasc Surg, 2011; 59: 158–162.
- 109) Younes R, Abrao FC, Gross J: Pulmonary metastasectomy for malignant melanoma: prognostic factors for long-term survival, Melanoma Res, 2013; 23: 307–311.
- 110) Yeo M, Masuda Y, Calvo MP, Di Martino M, Ielpo B, Ye-Xin K: Surgery for liver metastases from primary melanoma: a systematic review and meta-analysis, Langenbecks Arch Surg, 2022; 407: 3235–3247.
- 111) Prabhakaran S, Fulp WJ, Gonzalez RJ, et al: Resection of Gastrointestinal Metastases in Stage IV Melanoma: Correlation with Outcomes, Am Surg, 2016; 82: 1109–1116.
- 112) Vogelbaum MA, Brown PD, Messersmith H, et al: Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline, J Clin Oncol, 2022; 40: 492–516.
- 113) Leiter U, Stadler R, Mauch C, et al: Final Analysis of DeCOG-SLT Trial: No Survival Benefit for Complete Lymph Node Dissection in Patients With Melanoma With Positive Sentinel Node, J Clin Oncol, 2019; 37: 3000–3008.
- 114) Huang K, Fan J, Misra S: Acral Lentiginous Melanoma: Incidence and Survival in the United States, 2006-2015, an Analysis of the SEER Registry, J Surg Res 2020; 251: 329–339
- 115) Gumaste PV, Fleming NH, Silva I, et al: Analysis of recurrence patterns in acral versus nonacral melanoma: should histologic subtype influence treatment guidelines? Journal of the National Comprehensive Cancer Network: JNCCN, 2014; 12: 1706–1712.
- 116) Klemen ND, Han G, Leong SP, et al: Completion lymphadenectomy for a positive sentinel node biopsy in melanoma patients is not associated with a survival benefit, J Surg Oncol, 2019; 119: 1053–1059.
- 117) Angeles CV, Kang R, Shirai K, Wong SL: Meta-analysis of completion lymph node dissection in sentinel lymph node-positive melanoma, Br J Surg, 2019; 106: 672–681.
- 118) Scoville SD, Stanek JR, Rinehardt H, et al: Comparison of Outcomes Between Surveillance Ultrasound and Completion Lymph Node Dissection in Children and

- Adolescents With Sentinel Lymph Node-Positive Cutaneous Melanoma, Ann Surg, 2024; 279: 536–541.
- 119) Broman KK, Hughes TM, Dossett LA, et al: Surveillance of Sentinel Node-Positive Melanoma Patients with Reasons for Exclusion from MSLT-II: Multi-Institutional Propensity Score Matched Analysis, Journal of the American College of Surgeons, 2021; 232: 424–431.
- 120) Matsui Y, Sasaki J, Takatsuka S, Takenouchi T: Observation policy for sentinel node metastasis of melanoma: Comparative study with completion lymph node dissection in Japanese patients, J Dermatol, 2021; 48: 1221–1228
- 121) Zhong J, Zou Z, Hu T, et al: Survival impact of immediate complete lymph node dissection for Chinese acral and cutaneous melanoma with micrometastasis in sentinel nodes: a retrospective study, Clin Exp Med, 2023; 23: 4003–4010.
- 122) Hsu CC, Liao YH, Sheen YS: Survival benefit of sentinel lymph node biopsy in Asian melanoma patients, Pigment Cell Melanoma Res, 2023; 36: 522–530.
- 123) Morton DL, Wen DR, Wong JH, et al: Technical details of intraoperative lymphatic mapping for early stage melanoma, Arch Surg, 1992; 127: 392–399.
- 124) 川村龍吉, 小川陽一, 猪爪隆史ほか: 色素法併用による センチネルリンパ節生検を施行した皮膚悪性腫瘍 135 例 の検討, 日皮会誌, 2011; 121: 2265-2271.
- 125) 藤澤康弘, 中村泰大, 丸山 浩, 中村貴之, 川内康弘, 大塚藤男: インドシアニングリーンの蛍光を用いたセン チネルリンパ節生検50例のまとめ, 日皮会誌, 2012; 122: 2875-2883.
- 126) Alex JC, Weaver DL, Fairbank JT, Rankin BS, Krag DN: Gamma-probe-guided lymph node localization in malignant melanoma, Surgical oncology, 1993; 2: 303– 308.
- 127) McMasters KM, Reintgen DS, Ross MI, et al: Sentinel lymph node biopsy for melanoma: how many radioactive nodes should be removed? Ann Surg Oncol, 2001; 8: 192–197
- 128) Fujisawa Y, Nakamura Y, Kawachi Y, Otsuka F: Indocyanine green fluorescence-navigated sentinel node biopsy showed higher sensitivity than the radioisotope or blue dye method, which may help to reduce falsenegative cases in skin cancer, J Surg Oncol, 2012; 106: 41–45.
- 129) Nakamura Y, Fujisawa Y, Nakamura Y, et al: Improvement of the sentinel lymph node detection rate of cervical sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in head and neck skin cancer, The Journal of Dermatology, 2013; 40: 453–457.
- 130) Hayashi T, Furukawa H, Oyama A, et al: Sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in cutaneous head and neck/lip mucosa melanomas, Head Neck, 2012; 34: 758– 761
- 131) 黒岡定浩, 並川健二郎, 堤田 新, 田中亮多, 加藤潤史,

- 山崎直也:頭頸部皮膚悪性黒色腫に対するセンチネルリンパ節生検及び頸部リンパ節乳清術についての検討(第一報 センチネルリンパ節生検について), 日皮会誌, 2013; 123: 1045-1050.
- 132) 千々和秀記,進武一郎,坂本菊男,梅野博仁,中島 格: 前頭部・顔面皮膚悪性腫瘍リンパ節転移に対する郭清範 囲についての臨床的検討,日本耳鼻咽喉科学会会報,2007; 110:103-106.
- 133) Hayashi T, Furukawa H, Oyama A, Funayama E, Saito A, Yamamoto Y: Dominant lymph drainage in the facial region: evaluation of lymph nodes of facial melanoma patients, International Journal of Clinical Oncology, 2012; 17: 330–335.
- 134) Ishihara T, Kageshita T, Matsushita S, Ono T: Investigation of sentinel lymph nodes of the axillary and cubital regions in upper-extremity malignant skin tumors: a series of 15 patients, Int J Clin Oncol, 2003; 8: 297–300.
- 135) Fujiwara M, Suzuki A, Mizukami T, Nagata T, Ito T, Fukamizu H: Mid-arm lymph nodes dissection for melanoma, J Plast Reconstr Aesthet Surg, 2010; 63: 1561– 1564.
- 136) Veenstra HJ, Klop WM, Speijers MJ, et al: Lymphatic drainage patterns from melanomas on the shoulder or upper trunk to cervical lymph nodes and implications for the extent of neck dissection, Ann Surg Oncol, 2012; 19: 3906–3912.
- 137) van der Ploeg IM, Kroon BB, Valdes Olmos RA, Nieweg OE: Evaluation of lymphatic drainage patterns to the groin and implications for the extent of groin dissection in melanoma patients, Ann Surg Oncol, 2009; 16: 2994–2999
- 138) 中村泰大, 石塚洋典, 鬼澤沙織, 大塚藤男: 【メラノーマ】 臨床例 悪性黒色腫に対する膝窩リンパ節郭清 膝窩リ ンパ節の取り扱いについて, 皮膚病診療, 2010; 32: 745-748.
- 139) Steen ST, Kargozaran H, Moran CJ, Shin-Sim M, Morton DL, Faries MB: Management of popliteal sentinel nodes in melanoma, Journal of the American College of Surgeons, 2011; 213: 180–186; discussion 186–187.
- 140) Menes TS, Schachter J, Steinmetz AP, Hardoff R, Gutman H: Lymphatic drainage to the popliteal basin in distal lower extremity malignant melanoma, Arch Surg, 2004; 139: 1002–1006.
- 141) Mack LA, McKinnon JG: Controversies in the management of metastatic melanoma to regional lymphatic basins, J Surg Oncol, 2004; 86: 189–199.
- 142) White N, Yap LH, Srivastava S: Lymphadenectomy for melanoma in the clinically N1 neck: radical, modified radical, or selective? The Journal of craniofacial surgery, 2009; 20: 385–388.
- 143) O'Brien CJ, Petersen-Schaefer K, Ruark D, Coates AS, Menzie SJ, Harrison RI: Radical, modified, and selective neck dissection for cutaneous malignant melanoma, Head Neck, 1995; 17: 232–241.
- 144) Pu LL, Wells KE, Cruse CW, Shons AR, Reintgen DS: Prevalence of additional positive lymph nodes in com-

- plete lymphadenectomy specimens after positive sentinel lymphadenectomy findings for early-stage melanoma of the head and neck, Plastic and reconstructive surgery, 2003; 112: 43–49.
- 145) 黒岡定浩, 並川健二郎, 堤田 新, 田中亮多, 加藤潤史, 山崎直也: 頭頸部皮膚悪性腫瘍に対するセンチネルリン パ節生検及び頸部リンパ節郭清術についての検討 (第二 報 頸部リンパ節郭清術について), 日皮会誌, 2013; 123: 1051-1057.
- 146) 中村泰大: 【皮膚悪性腫瘍―基礎と臨床の最新研究動 向―】悪性黒色腫 悪性黒色腫の治療 外科的治療 手 術適応と方法論 (原発巣, 所属リンパ節転移), 日本臨 床, 2013; 71: 299-302.
- 147) 並川健二郎, 山崎直也, 山本明史ほか:頭頸部皮膚原発 悪性黒色腫の頸部郭清術,日皮会誌,2006;116:1201-1206.
- 148) Garbe C, Hauschild A, Volkenandt M, et al: Evidencebased and interdisciplinary consensus-based German guidelines: systemic medical treatment of melanoma in the adjuvant and palliative setting, Melanoma Res, 2008; 18: 152–160.
- 149) Namm JP, Chang AE, Cimmino VM, Rees RS, Johnson TM, Sabel MS: Is a level III dissection necessary for a positive sentinel lymph node in melanoma? J Surg Oncol, 2012; 105: 225–228.
- 150) de Vries M, Vonkeman WG, van Ginkel RJ, Hoekstra HJ: Morbidity after axillary sentinel lymph node biopsy in patients with cutaneous melanoma, Eur J Surg Oncol, 2005; 31: 778–783.
- 151) 中村泰大, 寺本由紀子, 山田勝裕, 佐藤さゆり, 山本明 史:メラノーマ 外科療法 悪性黒色腫における所属リン パ節郭清の方針と手術手技 世界の趨勢と当科の現状, Skin Cancer, 2014; 29: 114-116.
- 152) Baas PC, Schraffordt Koops H, Hoekstra HJ, van Bruggen JJ, van der Weele LT, Oldhoff J: Groin dissection in the treatment of lower-extremity melanoma. Short-term and long-term morbidity, Arch Surg, 1992; 127: 281–286.
- 153) Abbas S, Seitz M: Systematic review and meta-analysis of the used surgical techniques to reduce leg lymphedema following radical inguinal nodes dissection, Surgical oncology, 2011; 20: 88–96.
- 154) Teixeira F, Moutinho V, Jr, Akaishi E, et al: Popliteal lymph node dissection for metastases of cutaneous malignant melanoma, World J Surg Oncol, 2014; 12: 135.
- 155) 柴田真一, 安江 敬, 榊原章浩, 吉野 能, 吉川羊子, 富田 靖: 鼠径・骨盤内リンパ節郭清の治療を行った悪 性黒色腫 8 例について, Skin Cancer, 2005; 20: 150-153.
- 156) 堤田 新、山本有平、古川洋志、杉原平樹、吉田哲憲: メラノーマの鼠径リンパ節微小転移例におけるリンパ節 郭清範囲の検討 センチネルリンパ節転移陽性例の郭清 はどこまですべきか? Skin Cancer, 2006; 20: 264-267.
- 157) Kretschmer L, Neumann C, Preusser KP, Marsch WC: Superficial inguinal and radical ilioinguinal lymph node dissection in patients with palpable melanoma metastases to the groin-an analysis of survival and local recurrence, Acta oncologica (Stockholm, Sweden), 2001; 40: 72–78.

- 158) Spillane AJ, Haydu L, McMillan W, Stretch JR, Thompson JF: Quality assurance parameters and predictors of outcome for ilioinguinal and inguinal dissection in a contemporary melanoma patient population, Ann Surg Oncol, 2011; 18: 2521–2528.
- 159) Chang SB, Askew RL, Xing Y, et al: Prospective assessment of postoperative complications and associated costs following inguinal lymph node dissection (ILND) in melanoma patients, Ann Surg Oncol, 2010; 17: 2764–2772
- 160) Ollivier L, Orione C, Bore P, et al: Abscopal Response in Metastatic Melanoma: Real-World Data of a Retrospective, Multicenter Study, Cancers (Basel), 2022; 14: 4213.
- 161) Karakousis CP: Therapeutic node dissections in malignant melanoma, Ann Surg Oncol, 1998; 5: 473–482.
- 162) Meyer T, Merkel S, Gohl J, Hohenberger W: Lymph node dissection for clinically evident lymph node metastases of malignant melanoma, Eur J Surg Oncol, 2002; 28: 424–430.
- 163) Pidhorecky I, Lee RJ, Proulx G, et al: Risk factors for nodal recurrence after lymphadenectomy for melanoma, Ann Surg Oncol, 2001; 8: 109–115.
- 164) Henderson MA, Burmeister BH, Ainslie J, et al: Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial, Lancet Oncol, 2015; 16: 1049–1060.
- 165) Agrawal S, Kane JM, 3rd, Guadagnolo BA, Kraybill WG, Ballo MT: The benefits of adjuvant radiation therapy after therapeutic lymphadenectomy for clinically advanced, high-risk, lymph node-metastatic melanoma, Cancer, 2009; 115: 5836–5844.
- 166) Pinkham MB, Foote MC, Burmeister E, et al: Stage III melanoma in the axilla: patterns of regional recurrence after surgery with and without adjuvant radiation therapy, International journal of radiation oncology, biology, physics, 2013; 86: 702–708.
- 167) Strom T, Torres-Roca JF, Parekh A, et al: Regional Radiation Therapy Impacts Outcome for Node-Positive Cutaneous Melanoma, Journal of the National Comprehensive Cancer Network: JNCCN, 2017; 15: 473–482.
- 168) Danish HH, Patel KR, Switchenko JM, et al: The influence of postoperative lymph node radiation therapy on overall survival of patients with stage III melanoma, a National Cancer Database analysis, Melanoma Res, 2016; 26: 595–603.
- 169) Moncrieff MD, Martin R, O'Brien CJ, et al: Adjuvant postoperative radiotherapy to the cervical lymph nodes in cutaneous melanoma: is there any benefit for highrisk patients? Ann Surg Oncol, 2008; 15: 3022–3027.
- 170) Martin RC, Shannon KF, Quinn MJ, et al: The management of cervical lymph nodes in patients with cutaneous melanoma, Ann Surg Oncol, 2012; 19: 3926–3932.
- 171) Bentzen SM, Overgaard J, Thames HD, et al: Clinical

- radiobiology of malignant melanoma, Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology, 1989; 16: 169–182.
- 172) Konefal JB, Emami B, Pilepich MV: Malignant melanoma: analysis of dose fractionation in radiation therapy, Radiology, 1987; 164: 607–610.
- 173) Chang DT, Amdur RJ, Morris CG, Mendenhall WM: Adjuvant radiotherapy for cutaneous melanoma: comparing hypofractionation to conventional fractionation, International journal of radiation oncology, biology, physics, 2006; 66: 1051–1055.
- 174) Farshad A, Burg G, Panizzon R, Dummer R: A retrospective study of 150 patients with lentigo maligna and lentigo maligna melanoma and the efficacy of radiotherapy using Grenz or soft X-rays, Br J Dermatol, 2002; 146: 1042–1046.
- 175) Tsang RW, Liu FF, Wells W, Payne DG: Lentigo maligna of the head and neck. Results of treatment by radiotherapy, Arch Dermatol, 1994; 130: 1008–1012.
- 176) Zhang H, Li S, Wang XH, et al: Results of carbon ion radiotherapy for skin carcinomas in 45 patients, Br J Dermatol, 2012; 166: 1100–1106.
- 177) Koto M, Demizu Y, Saitoh JI, et al: Multicenter Study of Carbon-Ion Radiation Therapy for Mucosal Melanoma of the Head and Neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN), International journal of radiation oncology, biology, physics, 2017; 97: 1054–1060.
- 178) Verma V, Mehta MP: Clinical Outcomes of Proton Radiotherapy for Uveal Melanoma, Clin Oncol (R Coll Radiol), 2016; 28: e17–e27.
- 179) Demizu Y, Fujii O, Terashima K, et al: Particle therapy for mucosal melanoma of the head and neck. A single-institution retrospective comparison of proton and carbon ion therapy, Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al], 2014; 190: 186–191.
- 180) Zenda S, Akimoto T, Mizumoto M, et al: Phase II study of proton beam therapy as a nonsurgical approach for mucosal melanoma of the nasal cavity or para-nasal sinuses, Radiotherapy and oncology; journal of the European Society for Therapeutic Radiology and Oncology, 2016; 118: 267–271.
- 181) Watanabe T, Sanada Y, Hattori Y, Suzuki M: Correlation between the expression of LAT1 in cancer cells and the potential efficacy of boron neutron capture therapy, J Radiat Res, 2023; 64: 91–98.
- 182) Hiratsuka J, Fukuda H: Malignant melanoma, 10, Springer Science & Business Media, 2012.
- 183) Mishima Y: Melanoma and nonmelanoma neutron capture therapy using gene therapy: overview, Advances in neutron capture therapy Volume I medicine and physics, 1997; 1: 10–25.
- 184) Igaki H, Nakamura S, Yamazaki N, et al: Acral cutaneous malignant melanoma treated with linear accelerator-based boron neutron capture therapy system: a case

- report of first patient, Front Oncol, 2023; 13: 1272507.
- 185) Katz HR: The results of different fractionation schemes in the palliative irradiation of metastatic melanoma, International journal of radiation oncology, biology, physics, 1981; 7: 907–911.
- 186) Overgaard J: The role of radiotherapy in recurrent and metastatic malignant melanoma: a clinical radiobiological study, International journal of radiation oncology, biology, physics, 1986; 12: 867–872.
- 187) Forschner A, Heinrich V, Pflugfelder A, Meier F, Garbe C: The role of radiotherapy in the overall treatment of melanoma, Clin Dermatol, 2013; 31: 282–289.
- 188) Brown PD, Ballman KV, Cerhan JH, et al: Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, phase 3 trial, Lancet Oncol, 2017; 18: 1049– 1060
- 189) Chang EL, Wefel JS, Hess KR, et al: Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial, Lancet Oncol, 2009; 10: 1037–1044.
- 190) Yamamoto M, Serizawa T, Shuto T, et al: Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study Lancet Oncol, 2014; 15: 387–395.
- 191) Lucas JT, Jr, Colmer HG, White L, et al: Competing Risk Analysis of Neurologic versus Nonneurologic Death in Patients Undergoing Radiosurgical Salvage After Whole-Brain Radiation Therapy Failure: Who Actually Dies of Their Brain Metastases? International journal of radiation oncology, biology, physics, 2015; 92: 1008–1015.
- 192) Gonzalez-Martinez J, Hernandez L, Zamorano L, et al: Gamma knife radiosurgery for intracranial metastatic melanoma: a 6-year experience, J Neurosurg, 2002; 97: 494–498.
- 193) Grob JJ, Regis J, Laurans R, et al: Radiosurgery without whole brain radiotherapy in melanoma brain metastases. Club de Cancerologie Cutanee, Eur J Cancer, 1998; 34: 1187–1192.
- 194) Herfarth KK, Izwekowa O, Thilmann C, et al: Linacbased radiosurgery of cerebral melanoma metastases. Analysis of 122 metastases treated in 64 patients, Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al], 2003; 179: 366–371.
- 195) Koc M, McGregor J, Grecula J, Bauer CJ, Gupta N, Gahbauer RA: Gamma Knife radiosurgery for intracranial metastatic melanoma: an analysis of survival and prognostic factors, Journal of neuro-oncology, 2005; 71: 307– 313
- 196) Liew DN, Kano H, Kondziolka D, et al: Outcome predictors of Gamma Knife surgery for melanoma brain metastases. Clinical article, J Neurosurg, 2011; 114: 769–779.
- 197) Mathieu D, Kondziolka D, Cooper PB, et al: Gamma

- knife radiosurgery in the management of malignant melanoma brain metastases, Neurosurgery, 2007; 60: 471–481; discussion 481–482.
- 198) Neal MT, Chan MD, Lucas JT, Jr, et al: Predictors of survival, neurologic death, local failure, and distant failure after gamma knife radiosurgery for melanoma brain metastases, World neurosurgery, 2014; 82: 1250–1255.
- 199) Radbill AE, Fiveash JF, Falkenberg ET, et al: Initial treatment of melanoma brain metastases using gamma knife radiosurgery: an evaluation of efficacy and toxicity, Cancer, 2004; 101: 825–833.
- 200) Qin R, Olson A, Singh B, et al: Safety and Efficacy of Radiation Therapy in Advanced Melanoma Patients Treated With Ipilimumab, International journal of radiation oncology, biology, physics, 2016; 96: 72–77.
- 201) Schoenfeld JD, Mahadevan A, Floyd SR, et al: Ipil-mumab and cranial radiation in metastatic melanoma patients: a case series and review, Journal for immunotherapy of cancer, 2015; 3: 50.
- 202) Tazi K, Hathaway A, Chiuzan C, Shirai K: Survival of melanoma patients with brain metastases treated with ipilimumab and stereotactic radiosurgery, Cancer medicine, 2015; 4: 1–6.
- 203) Lancellotta V, Del Regno L, Di Stefani A, et al: The role of stereotactic radiotherapy in addition to immunotherapy in the management of melanoma brain metastases: results of a systematic review, Radiol Med, 2022; 127: 773–783.
- 204) Ge Y, Che X, Gao X, Zhao S, Su J: Combination of radiotherapy and targeted therapy for melanoma brain metastases: a systematic review, Melanoma Res, 2021; 31: 413–420.
- 205) Rulli E, Legramandi L, Salvati L, Mandala M: The impact of targeted therapies and immunotherapy in melanoma brain metastases: A systematic review and meta-analysis, Cancer, 2019; 125: 3776–3789.
- 206) Sha CM, Lehrer EJ, Hwang C, et al: Toxicity in combination immune checkpoint inhibitor and radiation therapy: A systematic review and meta-analysis, Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology, 2020; 151: 141–148.
- 207) Murphy JB, Morton JJ: The Effect of Roentgen Rays on the Rate of Growth of Spontaneous Tumors in Mice, J Exp Med, 1915; 22: 800–803.
- 208) Demaria S, Kawashima N, Yang AM, et al: Immunemediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer, Clin Cancer Res, 2005; 11: 728–734.
- 209) Abuodeh Y, Venkat P, Kim S: Systematic review of case reports on the abscopal effect, Current problems in cancer, 2016; 40: 25–37.
- 210) Chicas-Sett R, Morales-Orue I, Rodriguez-Abreu D, Lara-Jimenez P: Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: A systematic

- review. Clin Transl Radiat Oncol. 2018: 9: 5-11.
- 211) Tracz JA, Donnelly BM, Ngu S, Vojnic M, Wernicke AG, D'Amico RS: The abscopal effect: inducing immunogenicity in the treatment of brain metastases secondary to lung cancer and melanoma, Journal of neuro-oncology, 2023; 163: 1–14.
- 212) Yamazaki N, Uhara H, Wada H, et al: Phase I study of pegylated interferon-alpha-2b as an adjuvant therapy in Japanese patients with malignant melanoma, The Journal of Dermatology, 2016; 43: 1146–1153.
- 213) Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH: Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684, J Clin Oncol, 1996; 14: 7–17.
- 214) Kirkwood JM, Manola J, Ibrahim J, et al: A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma, Clin Cancer Res, 2004; 10: 1670–1677.
- 215) Eggermont AM, Suciu S, Santinami M, et al: Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial, Lancet, 2008; 372: 117–126.
- 216) Eggermont AM, Suciu S, Testori A, et al: Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma, J Clin Oncol, 2012; 30: 3810–3818.
- 217) Eggermont AMM, Rutkowski P, Dutriaux C, et al: Adjuvant therapy with pegylated interferon-alfa2b vs observation in stage II B/C patients with ulcerated primary: Results of the European Organisation for Research and Treatment of Cancer 18081 randomised trial, Eur J Cancer, 2020; 133: 94–103.
- 218) Hauschild A, Gogas H, Tarhini A, et al: Practical guidelines for the management of interferon-alpha-2b side effects in patients receiving adjuvant treatment for melanoma: expert opinion, Cancer, 2008; 112: 982–994.
- 219) Yamamoto A, Ishihara K: Clinical study of DAV+IFN-beta therapy (combination adjuvant therapy with intravenous DTIC, ACNU and VCR, and local injection of IFN-beta) for malignant melanoma, Int J Immunother, 1996; 12: 73–78.
- 220) 藤澤康弘, 大塚藤男, 日本皮膚悪性腫瘍学会皮膚癌予後 統計調査委員会悪性黒色腫全国追跡調査グループ: 術後 補助療法 (DAVFeron, フェロン療法, フェロン維持療 法) は悪性黒色腫ステージ II・III 患者の予後を改善する か 831 例の解析, 日皮会誌, 2012; 122: 2305-2311.
- 221) Matsumoto T, Yokota K, Sawada M, et al: Postoperative DAV-IFN-beta therapy does not improve survival rates of stage II and stage III melanoma patients significantly, J Eur Acad Dermatol Venereol, 2013; 27: 1514–1520.
- 222) 高田 実,八田尚人,竹原和彦:悪性黒色腫の術後補助 化学療法による治療関連白血病 1 例の報告と補助化学 療法を受けた73 例の追跡調査,日皮会誌,2000;110:297-

300

- 223) 紺野隆之, 日下部順子, 三浦 歩ほか: 悪性黒色腫の DAV フェロン療法中に発症した骨髄異形成症候群の 2 例, 臨 皮, 2006; 60: 71-75.
- 224) 石原和之: Human Fibroblast Interferon (Hu IFN-β) に よる皮膚悪性腫瘍に対する臨床的研究 局所投与を中心と した検討, 日癌治, 1983; 18: 41-53.
- 225) Aoyagi S, Hata H, Homma E, Shimizu H: Sequential local injection of low-dose interferon-beta for maintenance therapy in stage II and III melanoma: a singleinstitution matched case-control study, Oncology, 2012; 82: 139–146.
- 226) Yanagi T, Hata H, Homma E, Kitamura S, Imafuku K, Shimizu H: Adjuvant therapy with low-dose interferonbeta for stage II and III melanoma: results of a retrospective analysis, Clin Exp Dermatol, 2017; 42: 781–785.
- 227) Namikawa K, Tsutsumida A, Mizutani T, et al: Randomized phase III trial of adjuvant therapy with locoregional interferon beta versus surgery alone in stage II/III cutaneous melanoma: Japan Clinical Oncology Group Study (JCOG1309, J-FERON), Jpn J Clin Oncol, 2017; 47: 664–667.
- 228) Maio M, Lewis K, Demidov L, et al: Adjuvant vemurafenib in resected, BRAF (V600) mutation-positive melanoma (BRIM8): a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial, Lancet Oncol, 2018: 19: 510–520.
- 229) Long GV, Hauschild A, Santinami M, et al: Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma, N Engl J Med, 2017; 377: 1813–1823.
- 230) Hauschild A, Dummer R, Schadendorf D, et al: Longer Follow-Up Confirms Relapse-Free Survival Benefit With Adjuvant Dabrafenib Plus Trametinib in Patients With Resected BRAF V600-Mutant Stage III Melanoma, J Clin Oncol, 2018; 36: 3441–3449.
- 231) Dummer R, Brase JC, Garrett J, et al: Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAF (V600)-mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial, Lancet Oncol, 2020; 21: 358– 372.
- 232) Dummer R, Hauschild A, Santinami M, et al: Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma, N Engl J Med, 2020; 383: 1139– 1148
- 233) Long GV, Hauschild A, Santinami M, et al: Final Results for Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma, N Engl J Med, 2024; doi: 10.1056/ NEJMoa2404139.
- 234) Eggermont AM, Chiarion-Sileni V, Grob JJ, et al: Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial, Lancet Oncol, 2015; 16: 522–530.
- 235) Eggermont AM, Chiarion-Sileni V, Grob JJ, et al: Prolonged Survival in Stage III Melanoma with Ipilimumab

- Adjuvant Therapy, N Engl J Med, 2016; 375: 1845-1855.
- 236) Eggermont AMM, Chiarion-Sileni V, Grob JJ, et al: Adjuvant ipilimumab versus placebo after complete resection of stage III melanoma: long-term follow-up results of the European Organisation for Research and Treatment of Cancer 18071 double-blind phase 3 randomised trial, Eur J Cancer, 2019; 119: 1–10.
- 237) Tarhini AA, Lee SJ, Hodi FS, et al: Phase III Study of Adjuvant Ipilimumab(3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609, J Clin Oncol, 2020; 38: 567–575.
- 238) Weber J, Mandala M, Del Vecchio M, et al: Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma, N Engl J Med, 2017; 377: 1824–1835.
- 239) Ascierto PA, Del Vecchio M, Mandala M, et al: Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial, Lancet Oncol, 2020; 21: 1465–1477
- 240) Kirkwood JM, Del Vecchio M, Weber J, et al: Adjuvant nivolumab in resected stage IIB/C melanoma: primary results from the randomized, phase 3 CheckMate 76K trial, Nat Med, 2023; 29: 2835–2843.
- 241) Eggermont AMM, Blank CU, Mandala M, et al: Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma, N Engl J Med, 2018; 378: 1789–1801.
- 242) Eggermont AMM, Blank CU, Mandala M, et al: Longer Follow-Up Confirms Recurrence-Free Survival Benefit of Adjuvant Pembrolizumab in High-Risk Stage III Melanoma: Updated Results From the EORTC 1325-MG/ KEYNOTE-054 Trial, J Clin Oncol, 2020; 38: 3925–3936.
- 243) Eggermont AMM, Blank CU, Mandala M, et al: Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial, Lancet Oncol, 2021; 22: 643-654.
- 244) Bottomley A, Coens C, Mierzynska J, et al: Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): healthrelated quality-of-life results from a double-blind, randomised, controlled, phase 3 trial, Lancet Oncol, 2021; 22: 655-664.
- 245) Eggermont AMM, Kicinski M, Blank CU, et al: Five-Year Analysis of Adjuvant Pembrolizumab or Placebo in Stage III Melanoma, NEJM Evid, 2022; 1: EVIDoa2200214.
- 246) Grossmann KF, Othus M, Patel SP, et al: Adjuvant Pembrolizumab versus IFNalpha2b or Ipilimumab in Resected High-Risk Melanoma, Cancer Discov, 2022; 12: 644–653.
- 247) Luke JJ, Rutkowski P, Queirolo P, et al: Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a

- randomised, double-blind, phase 3 trial, Lancet, 2022; 399: 1718–1729.
- 248) Long GV, Luke JJ, Khattak MA, et al: Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma (KEYNOTE-716): distant metastasis-free survival results of a multicentre, double-blind, randomised, phase 3 trial, Lancet Oncol, 2022; 23: 1378– 1388
- 249) Luke JJ, Ascierto PA, Khattak MA, et al: Pembrolizumab Versus Placebo as Adjuvant Therapy in Resected Stage IIB or IIC Melanoma: Final Analysis of Distant Metastasis-Free Survival in the Phase III KEY-NOTE-716 Study, J Clin Oncol, 2024; 42: 1619–1624.
- 250) Weber JS, Schadendorf D, Del Vecchio M, et al: Adjuvant Therapy of Nivolumab Combined With Ipilimumab Versus Nivolumab Alone in Patients With Resected Stage IIIB-D or Stage IV Melanoma (CheckMate 915), J Clin Oncol, 2023; 41: 517–527.
- 251) Versluis JM, Long GV, Blank CU: Learning from clinical trials of neoadjuvant checkpoint blockade, Nat Med, 2020; 26: 475–484.
- 252) Tetzlaff MT, Messina JL, Stein JE, et al: Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma, Ann Oncol, 2018; 29: 1861–1868.
- 253) Amaria RN, Menzies AM, Burton EM, et al: Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium, Lancet Oncol, 2019; 20: e378–e389.
- 254) Menzies AM, Amaria RN, Rozeman EA, et al: Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC), Nat Med, 2021; 27: 301–309.
- 255) Patel SP, Othus M, Chen Y, et al: Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma, N Engl J Med, 2023; 388: 813–823.
- 256) Blank CU, Lucas MW, Scolyer RA, et al: Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma, N Engl J Med, 2024; doi: 10.1056/ NEJMoa2402604.
- 257) Seth R, Messersmith H, Kaur V, et al: Systemic Therapy for Melanoma: ASCO Guideline, J Clin Oncol, 2020; 38: 3947–3970.
- 258) Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U, clinicalguidelines@esmo.org EGCEa: Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger, Ann Oncol, 2019; 30: 1884–1901.
- 259) Helgadottir H, Ny L, Ullenhag GJ, et al: Survival after introduction of adjuvant treatment in stage III melanoma: a nationwide registry-based study, J Natl Cancer Inst, 2023; 115: 1077–1084.
- 260) Schumann K, Mauch C, Klespe KC, et al: Real-world outcomes using PD-1 antibodies and BRAF + MEK inhibitors for adjuvant melanoma treatment from 39

- skin cancer centers in Germany, Austria and Switzerland, J Eur Acad Dermatol Venereol, 2023; 37: 894–906.
- 261) Bai X, Shaheen A, Grieco C, et al: Dabrafenib plus trametinib versus anti-PD-1 monotherapy as adjuvant therapy in BRAF V600-mutant stage III melanoma after definitive surgery: a multicenter, retrospective cohort study, EClinicalMedicine, 2023; 65: 102290.
- 262) Mulder E, Grunhagen DJ, Sleijfer S, Uyl-de Groot CA, van der Veldt AAM: Adjuvant treatment in patients with melanoma: The planning of scanning, Eur J Cancer, 2021: 157: 306–307.
- 263) Hayward NK, Wilmott JS, Waddell N, et al: Wholegenome landscapes of major melanoma subtypes, Nature, 2017; 545: 175–180.
- 264) Lian B, Si L, Chi ZH, et al: Toripalimab (anti-PD-1) versus high-dose interferon-alpha2b as adjuvant therapy in resected mucosal melanoma: a phase II randomized trial, Ann Oncol, 2022; 33: 1061–1070.
- 265) Ignatiadis M, Sledge GW, Jeffrey SS: Liquid biopsy enters the clinic -implementation issues and future challenges, Nat Rev Clin Oncol, 2021; 18: 297–312.
- 266) Robert C, Long GV, Brady B, et al: Nivolumab in previously untreated melanoma without BRAF mutation, N Engl J Med 2015; 372: 320–330.
- 267) Cocconi G, Bella M, Calabresi F, et al: Treatment of metastatic malignant melanoma with dacarbazine plus tamoxifen, N Engl J Med, 1992; 327: 516–523.
- 268) Grob JJ, Amonkar MM, Martin-Algarra S, et al: Patient perception of the benefit of a BRAF inhibitor in metastatic melanoma: quality-of-life analyses of the BREAK-3 study comparing dabrafenib with dacarbazine, Ann Oncol, 2014; 25: 1428–1436.
- 269) Avril MF, Aamdal S, Grob JJ, et al: Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study, J Clin Oncol, 2004; 22: 1118–1125.
- 270) Yamazaki N, Kiyohara Y, Uhara H, et al: Efficacy and safety of nivolumab in Japanese patients with previously untreated advanced melanoma: A phase II study. Cancer Sci, 2017; 108: 1223–1230.
- 271) Del Prete SA, Maurer LH, O'Donnell J, Forcier RJ, LeMarbre P: Combination chemotherapy with cisplatin, carmustine, dacarbazine, and tamoxifen in metastatic melanoma, Cancer Treat Rep, 1984; 68: 1403–1405.
- 272) Chiarion Sileni V, Nortilli R, Aversa SM, et al: Phase II randomized study of dacarbazine, carmustine, cisplatin and tamoxifen versus dacarbazine alone in advanced melanoma patients, Melanoma Res, 2001; 11: 189–196.
- 273) Chapman PB, Einhorn LH, Meyers ML, et al: Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma, J Clin Oncol, 1999; 17: 2745–2751.
- 274) 宇原 久, 斎田俊明:進行期悪性黒色腫に対する dacarbazine, nimustine, cisplatin, tamoxifen 併用療法(DAC-Tam 療法: cisplatin1 回投与法)の治療成績, 日皮会誌, 2000; 110: 979.

- 275) Flaherty KT, Lee SJ, Zhao F, et al: Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma, J Clin Oncol, 2013; 31: 373–379.
- 276) Kim KB, Sosman JA, Fruehauf JP, et al: BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma, J Clin Oncol, 2012; 30: 34–41.
- 277) Yan X, Sheng X, Chi Z, et al: Randomized Phase II Study of Bevacizumab in Combination With Carboplatin Plus Paclitaxel in Patients With Previously Untreated Advanced Mucosal Melanoma, J Clin Oncol, 2021; 39: 881–889.
- 278) Chapman PB, Hauschild A, Robert C, et al: Improved survival with vemurafenib in melanoma with BRAF V600E mutation, N Engl J Med, 2011; 364: 2507–2516.
- 279) McArthur GA, Chapman PB, Robert C, et al: Safety and efficacy of vemurafenib in BRAF (V600E) and BRAF (V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study, Lancet Oncol, 2014; 15: 323–332.
- 280) Hauschild A, Grob JJ, Demidov LV, et al: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial, Lancet, 2012: 380: 358–365.
- 281) Flaherty KT, Robert C, Hersey P, et al: Improved survival with MEK inhibition in BRAF-mutated melanoma, N Engl J Med, 2012; 367: 107–114.
- 282) Long GV, Flaherty KT, Stroyakovskiy D, et al: Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study, Ann Oncol, 2019; 30: 1848.
- 283) Schadendorf D, Long GV, Stroiakovski D, et al: Threeyear pooled analysis of factors associated with clinical outcomes across dabrafenib and trametinib combination therapy phase 3 randomised trials, Eur J Cancer, 2017; 82: 45–55.
- 284) Ascierto PA, McArthur GA, Dreno B, et al: Cobimetinib combined with vemurafenib in advanced BRAF (V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial, Lancet Oncol, 2016; 17: 1248–1260.
- 285) Dummer R, Ascierto PA, Gogas HJ, et al: Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial, Lancet Oncol, 2018; 19: 1315–1327.
- 286) Yamazaki N, Tsutsumida A, Takahashi A, et al: Phase 1/2 study assessing the safety and efficacy of dabrafenib and trametinib combination therapy in Japanese patients with BRAF V600 mutation-positive advanced cutaneous melanoma, J Dermatol, 2018; 45: 397–407.
- 287) Takahashi A, Namikawa K, Nakano E, Yamazaki N: Real-world efficacy and safety data for dabrafenib and

- trametinib combination therapy in Japanese patients with BRAF V600 mutation-positive advanced melanoma, J Dermatol, 2020; 47: 257–264.
- 288) Fujisawa Y, Ito T, Kato H, et al: Outcome of combination therapy using BRAF and MEK inhibitors among Asian patients with advanced melanoma: An analysis of 112 cases, Eur J Cancer, 2021; 145: 210–220.
- 289) Namikawa K, Ito T, Yoshikawa S, et al: Systemic therapy for Asian patients with advanced BRAF V600-mutant melanoma in a real-world setting: A multicenter retrospective study in Japan (B-CHECK-RWD study), Cancer medicine, 2023; 12: 17967–17980.
- 290) Agarwala SS, Kirkwood JM, Gore M, et al: Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study, J Clin Oncol, 2004; 22: 2101–2107.
- 291) Schadendorf D, Hauschild A, Ugurel S, et al: Dose-intensified bi-weekly temozolomide in patients with asymptomatic brain metastases from malignant melanoma: a phase II DeCOG/ADO study, Ann Oncol, 2006; 17: 1592–1597.
- 292) Middleton MR, Grob JJ, Aaronson N, et al: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma, J Clin Oncol, 2000; 18: 158–166.
- 293) Gillet JP, Gottesman MM: Mechanisms of multidrug resistance in cancer, Methods Mol Biol, 2010; 596: 47–76.
- 294) Larkin JM, Hughes SA, Beirne DA, et al: A phase I/II study of lomustine and temozolomide in patients with cerebral metastases from malignant melanoma, Br J Cancer, 2007; 96: 44–48.
- 295) Colombino M, Capone M, Lissia A, et al: BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma, J Clin Oncol, 2012; 30: 2522–2529.
- 296) Davies MA, Saiag P, Robert C, et al: Dabrafenib plus trametinib in patients with BRAF (V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial, Lancet Oncol, 2017; 18: 863–873.
- 297) Hu-Lieskovan S, Mok S, Homet Moreno B, et al: Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF (V600E) melanoma, Sci Transl Med, 2015; 7: 279ra241.
- 298) Gutzmer R, Stroyakovskiy D, Gogas H, et al: Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF (V600) mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial, Lancet, 2020; 395: 1835–1844.
- 299) Ribas A, Lawrence D, Atkinson V, et al: Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma, Nat Med, 2019; 25: 936–940.
- 300) Ascierto PA, Ferrucci PF, Fisher R, et al: Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-

- mutant melanoma. Nat Med. 2019: 25: 941-946.
- 301) Dummer R, Welti M, Ramelyte E: The role of triple therapy and therapy sequence in treatment of BRAFmutant metastatic melanoma. Response to overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutationpositive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study, J Transl Med, 2023; 21: 529.
- 302) Ferrucci PF, Gaeta A, Cocorocchio E, D'Ecclesiis O, Gandini S: Meta-analysis of randomized phase II-III trials evaluating triplet combinations of immunotherapy and targeted therapy for BRAF V600-mutant unresectable or metastatic melanoma, J Clin Oncol, 2022; 40: 9541.
- 303) Ferrucci PF, Di Giacomo AM, Del Vecchio M, et al: KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma, Journal for immunotherapy of cancer, 2020; 8: e001806.
- 304) Ribas A, Ferrucci PF, Atkinson V, et al: Pembrolizumab (pembro) plus dabrafenib (dab) and trametinib (tram) in BRAFV600E/Kmutant melanoma: Long-term follow-up of KEYNOTE-022 parts 1, 2, and 3, J Clin Oncol, 2022; 40 (Suppl): 9516.
- 305) Sheng X, Yan X, Chi Z, et al: Axitinib in Combination With Toripalimab, a Humanized Immunoglobulin G(4) Monoclonal Antibody Against Programmed Cell Death-1, in Patients With Metastatic Mucosal Melanoma: An Open-Label Phase IB Trial, J Clin Oncol, 2019; 37: 2987– 2999.
- 306) Mao L, Fang M, Chen Y, et al: Atezolizumab plus Bevacizumab in Patients with Unresectable or Metastatic Mucosal Melanoma: A Multicenter, Open-Label, Single-Arm Phase II Study, Clin Cancer Res, 2022; 28: 4642–4648.
- 307) Hodi FS, Corless CL, Giobbie-Hurder A, et al: Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin, J Clin Oncol, 2013; 31: 3182–3190.
- 308) Kalinsky K, Lee S, Rubin KM, et al: A phase 2 trial of dasatinib in patients with locally advanced or stage IV mucosal, acral, or vulvovaginal melanoma: A trial of the ECOG-ACRIN Cancer Research Group (E2607), Cancer, 2017; 123: 2688–2697.
- 309) Guo J, Carvajal RD, Dummer R, et al: Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial, Ann Oncol, 2017; 28: 1380–1387.
- 310) Carvajal RD, Lawrence DP, Weber JS, et al: Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition, Clin Cancer Res, 2015; 21: 2289–2296.
- 311) Shi H, Hugo W, Kong X, et al: Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy, Cancer Discov 2014; 4: 80–93.

- 312) Dummer R, Schadendorf D, Ascierto PA, et al: Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, openlabel, randomised, phase 3 trial, Lancet Oncol, 2017; 18: 435–445.
- 313) Teixido C, Castillo P, Martinez-Vila C, Arance A, Alos L: Molecular Markers and Targets in Melanoma, Cells, 2021: 10: 2320.
- 314) Hong DS, DuBois SG, Kummar S, et al: Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials, Lancet Oncol, 2020; 21: 531–540.
- 315) Mao L, Dai J, Cao Y, et al: Palbociclib in advanced acral melanoma with genetic aberrations in the cyclin-dependent kinase 4 pathway, Eur J Cancer, 2021; 148: 297– 306.
- 316) Rose AA, Annis MG, Frederick DT, et al: MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB, Clin Cancer Res, 2016; 22: 6088–6098.
- 317) Ott PA, Pavlick AC, Johnson DB, et al: A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma, Cancer, 2019; 125: 1113–1123.
- 318) Havel JJ, Chowell D, Chan TA: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy, Nat Rev Cancer, 2019; 19: 133–150.
- 319) Bai X, Shoushtari AN, Betof Warner A, et al: Benefit and toxicity of programmed death-1 blockade vary by ethnicity in patients with advanced melanoma: an international multicentre observational study, Br J Dermatol, 2022; 187; 401–410.
- 320) Robert C, Thomas L, Bondarenko I, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma, N Engl J Med, 2011; 364: 2517–2526.
- 321) Hodi FS, O'Day SJ, McDermott DF, et al: Improved survival with ipilimumab in patients with metastatic melanoma, N Engl J Med, 2010; 363: 711–723.
- 322) Ascierto PA, Del Vecchio M, Robert C, et al: Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial, Lancet Oncol, 2017; 18: 611–622.
- 323) Yamazaki N, Kiyohara Y, Uhara H, et al: Phase II study of ipilimumab monotherapy in Japanese patients with advanced melanoma, Cancer Chemother Pharmacol, 2015; 76: 997–1004.
- 324) Robert C, Long GV, Brady B, et al: Five-Year Outcomes With Nivolumab in Patients With Wild-Type BRAF Advanced Melanoma, J Clin Oncol, 2020; 38: 3937–3946.
- 325) Robert C, Schachter J, Long GV, et al: Pembrolizumab versus Ipilimumab in Advanced Melanoma, N Engl J Med, 2015; 372: 2521–2532.
- 326) Robert C, Carlino MS, McNeil C, et al: Seven-Year Follow-Up of the Phase III KEYNOTE-006 Study: Pembrolizumab Versus Ipilimumab in Advanced Melanoma, J

- Clin Oncol. 2023: 41: 3998-4003.
- 327) Yamazaki N, Takenouchi T, Fujimoto M, et al: Phase 1b study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in Japanese patients with advanced melanoma (KEYNOTE-041), Cancer Chemother Pharmacol, 2017; 79: 651–660.
- 328) Yamazaki N, Kiyohara Y, Uhara H, et al: Long-term follow up of nivolumab in previously untreated Japanese patients with advanced or recurrent malignant melanoma, Cancer Sci, 2019; 110: 1995–2003.
- 329) Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al: Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma, N Engl J Med, 2017; 377: 1345–1356
- 330) Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al: Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma, J Clin Oncol, 2022; 40: 127–137.
- 331) Namikawa K, Kiyohara Y, Takenouchi T, et al: Efficacy and safety of nivolumab in combination with ipilimumab in Japanese patients with advanced melanoma: An open-label, single-arm, multicentre phase II study, Eur J Cancer, 2018; 105: 114–126.
- 332) Namikawa K, Kiyohara Y, Takenouchi T, et al: Final analysis of a phase II study of nivolumab in combination with ipilimumab for unresectable chemotherapy-naive advanced melanoma, J Dermatol, 2020; 47: 1257–1266.
- 333) Nakamura Y, Namikawa K, Kiniwa Y, et al: Efficacy comparison between anti-PD-1 antibody monotherapy and anti-PD-1 plus anti-CTLA-4 combination therapy as first-line immunotherapy for advanced acral melanoma: A retrospective, multicenter study of 254 Japanese patients, Eur J Cancer, 2022; 176: 78–87.
- 334) Nakamura Y, Namikawa K, Yoshikawa S, et al: Anti-PD-1 antibody monotherapy versus anti-PD-1 plus anti-CTLA-4 combination therapy as first-line immunotherapy in unresectable or metastatic mucosal melanoma: a retrospective, multicenter study of 329 Japanese cases (JMAC study), ESMO Open, 2021; 6: 100325.
- 335) Inozume T, Namikawa K, Kato H, et al: Analyzing the relationship between the efficacy of first-line immune checkpoint inhibitors and cumulative sun damage in Japanese patients with advanced BRAF wild-type nonacral cutaneous melanoma: A retrospective real-world, multicenter study, J Dermatol Sci, 2023; 110: 19–26.
- 336) Margolin K, Ernstoff MS, Hamid O, et al: Ipilimumab in patients with melanoma and brain metastases: an openlabel, phase 2 trial, Lancet Oncol, 2012; 13: 459–465.
- 337) Long GV, Atkinson V, Lo S, et al: Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study, Lancet Oncol, 2018; 19: 672–681.
- 338) Eroglu Z, Topcu TO, Yu HM, Margolin KA: How I treat brain metastases of melanoma, ESMO Open, 2022; 7: 100598.

- 339) Tawbi HA, Forsyth PA, Algazi A, et al: Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain, N Engl J Med, 2018; 379: 722–730.
- 340) Tawbi HA, Forsyth PA, Hodi FS, et al: Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): final results of an openlabel, multicentre, phase 2 study, Lancet Oncol, 2021; 22: 1692–1704.
- 341) Di Giacomo AM, Chiarion-Sileni V, Del Vecchio M, et al: Primary Analysis and 4-Year Follow-Up of the Phase III NIBIT-M2 Trial in Melanoma Patients With Brain Metastases, Clin Cancer Res, 2021; 27: 4737–4745.
- 342) Le DT, Durham JN, Smith KN, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade, Science, 2017; 357: 409–413.
- 343) Marabelle A, Fakih M, Lopez J, et al: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study, Lancet Oncol, 2020; 21: 1353–1365.
- 344) Sunshine J, Taube JM: PD-1/PD-L1 inhibitors, Curr Opin Pharmacol, 2015; 23: 32–38.
- 345) Tumeh PC, Harview CL, Yearley JH, et al: PD-1 block-ade induces responses by inhibiting adaptive immune resistance, Nature, 2014; 515: 568–571.
- 346) Robert C, Ribas A, Hamid O, et al: Durable Complete Response After Discontinuation of Pembrolizumab in Patients With Metastatic Melanoma, J Clin Oncol, 2018; 36: 1668–1674.
- 347) Betof Warner A, Palmer JS, Shoushtari AN, et al: Long-Term Outcomes and Responses to Retreatment in Patients With Melanoma Treated With PD-1 Blockade, J Clin Oncol, 2020; 38: 1655–1663.
- 348) Jansen YJL, Rozeman EA, Mason R, et al: Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma, Ann Oncol, 2019; 30: 1154–1161
- 349) Schadendorf D, Wolchok JD, Hodi FS, et al: Efficacy and Safety Outcomes in Patients With Advanced Melanoma Who Discontinued Treatment With Nivolumab and Ipilimumab Because of Adverse Events: A Pooled Analysis of Randomized Phase II and III Trials, J Clin Oncol, 2017; 35: 3807–3814.
- 350) Sade-Feldman M, Jiao YJ, Chen JH, et al: Resistance to checkpoint blockade therapy through inactivation of antigen presentation, Nat Commun, 2017; 8: 1136.
- 351) Inozume T, Yaguchi T, Ariyasu R, et al: Analysis of the Tumor Reactivity of Tumor-Infiltrating Lymphocytes in a Metastatic Melanoma Lesion that Lost Major Histocompatibility Complex Class I Expression after Anti-PD-1 Therapy, J Invest Dermatol, 2019; 139: 1490–1496.
- 352) Kawashima S, Inozume T, Kawazu M, et al: TIGIT/ CD155 axis mediates resistance to immunotherapy in

- patients with melanoma with the inflamed tumor microenvironment, Journal for immunotherapy of cancer, 2021; 9: e003134.
- 353) Sznol M, Ferrucci PF, Hogg D, et al: Pooled Analysis Safety Profile of Nivolumab and Ipilimumab Combination Therapy in Patients With Advanced Melanoma, J Clin Oncol, 2017; 35: 3815-3822.
- 354) Horvat TZ, Adel NG, Dang TO, et al: Immune-Related Adverse Events, Need for Systemic Immunosuppression, and Effects on Survival and Time to Treatment Failure in Patients With Melanoma Treated With Ipilimumab at Memorial Sloan Kettering Cancer Center, J Clin Oncol, 2015; 33: 3193-3198.
- 355) Amoroso V, Gallo F, Alberti A, et al: Immune-related adverse events as potential surrogates of immune checkpoint inhibitors' efficacy: a systematic review and meta-analysis of randomized studies, ESMO Open, 2023; 8: 100787.
- 356) Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G, Weber JS: Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes, Clin Cancer Res, 2016; 22: 886-894.
- 357) Nakamura Y, Tanaka R, Asami Y, et al: Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: A multi-institutional retrospective study, J Dermatol, 2017; 44: 117-122.
- 358) Teng MW, Ngiow SF, Ribas A, Smyth MJ: Classifying Cancers Based on T-cell Infiltration and PD-L1, Cancer Res, 2015; 75: 2139-2145.
- 359) Andtbacka RHI, Collichio F, Harrington KJ, et al: Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma, Journal for immunotherapy of cancer, 2019; 7: 145.
- 360) Chesney J, Puzanov I, Collichio F, et al: Randomized, Open-Label Phase II Study Evaluating the Efficacy and Safety of Talimogene Laherparepvec in Combination With Ipilimumab Versus Ipilimumab Alone in Patients With Advanced, Unresectable Melanoma, J Clin Oncol, 2018; 36: 1658-1667.
- 361) Chesney JA, Puzanov I, Collichio FA, et al: Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial, Journal for immunotherapy of cancer, 2023; 11: e006270.
- 362) Chesney JA, Ribas A, Long GV, et al: Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma, J Clin Oncol, 2023; 41: 528-540.
- 363) Ascierto PA, Lipson EJ, Dummer R, et al: Nivolumab and Relatlimab in Patients With Advanced Melanoma

- That Had Progressed on Anti-Programmed Death-1/ Programmed Death Ligand 1 Therapy: Results From the Phase I/IIa RELATIVITY-020 Trial, J Clin Oncol, 2023; 41: 2724-2735.
- 364) Tawbi HA, Schadendorf D, Lipson EJ, et al: Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma, N Engl J Med, 2022; 386: 24-34.
- 365) Rosenberg SA, Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer, Science, 2015; 348: 62-68.
- 366) Inozume T, Hanada K, Wang QJ, et al: Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells, J Immunother, 2010; 33. 956-964
- 367) Gros A, Robbins PF, Yao X, et al: PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors, J Clin Invest, 2014; 124: 2246-2259.
- 368) Rohaan MW, Borch TH, van den Berg JH, et al: Tumor-Infiltrating Lymphocyte Therapy or Ipilimumab in Advanced Melanoma, N Engl J Med, 2022; 387: 2113-2125.
- 369) Leidner R, Sanjuan Silva N, Huang H, et al: Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer, N Engl J Med, 2022; 386: 2112-2119.
- 370) Kim SP, Vale NR, Zacharakis N, et al: Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor-Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors, Cancer Immunol Res, 2022; 10: 932-946.
- 371) Ascierto PA, Stroyakovskiy D, Gogas H, et al: Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAF (V600) mutationpositive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study, Lancet Oncol, 2023; 24: 33-44.
- 372) Atkins MB, Lee SJ, Chmielowski B, et al: Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients With Advanced BRAF-Mutant Melanoma: The DREAMseg Trial-ECOG-ACRIN EA6134, J Clin Oncol, 2023; 41: 186-197.
- 373) Ascierto PA, Mandala M, Ferrucci PF, et al: Sequencing of Ipilimumab Plus Nivolumab and Encorafenib Plus Binimetinib for Untreated BRAF-Mutated Metastatic Melanoma (SECOMBIT): A Randomized, Three-Arm, Open-Label Phase II Trial, J Clin Oncol, 2023; 41: 212-
- 374) Kim CG, Kim M, Hwang J, et al: First-line pembrolizumab versus dabrafenib/trametinib treatment for BRAF V600-mutant advanced melanoma, J Am Acad Dermatol, 2022; 87: 989-996.
- 375) VanderWalde A, Bellasea SL, Kendra KL, et al: Ipilimumab with or without nivolumab in PD-1 or PD-L1 blockade refractory metastatic melanoma: a randomized phase 2 trial, Nat Med, 2023; 29: 2278-2285.
- 376) Zimmer L, Apuri S, Eroglu Z, et al: Ipilimumab alone or

- in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma, Eur J Cancer, 2017; 75: 47-55.
- 377) Mori T, Namikawa K, Yamazaki N, et al: Efficacy of salvage therapies for advanced acral melanoma after anti-PD-1 monotherapy failure: a multicenter retrospective study of 108 Japanese patients, Front Med (Lausanne), 2023: 10: 1229937.
- 378) Tanaka K, Nakamura Y, Mizutani T, et al: Confirmatory trial of non-amputative digit preservation surgery for subungual melanoma: Japan Clinical Oncology Group study (JCOG1602, J-NAIL study protocol), BMC cancer, 2019; 19: 1002.
- 379) Moehrle M, Metzger S, Schippert W, Garbe C, Rassner G, Breuninger H: "Functional" surgery in subungual melanoma, Dermatol Surg, 2003; 29: 366-374.
- 380) Ogata D, Uhara H, Tsutsumida A, et al: Nail apparatus melanoma in a Japanese population: a comparative study of surgical procedures and prognoses in a large series of 151 cases, Eur J Dermatol, 2017; 27: 620-626.
- 381) Nguyen JT, Bakri K, Nguyen EC, Johnson CH, Moran SL: Surgical management of subungual melanoma: mayo clinic experience of 124 cases, Annals of plastic surgery, 2013; 71: 346-354.
- 382) Li J, Wang J, Li D, et al: Adjuvant PD-1 inhibitor versus high-dose interferon alpha-2b for Chinese patients with cutaneous and acral melanoma: A retrospective cohort analysis, Dermatol Ther, 2021; 34: e15067.
- 383) Sun W, Xu Y, Yan W, et al: A real-world study of adjuvant anti-PD-1 immunotherapy on stage III melanoma with BRAF, NRAS, and KIT mutations, Cancer medicine, 2023; 12: 15945-15954.
- 384) Sharma R, Koruth R, Kanters S, Druyts E, Tarhini A: Comparative efficacy and safety of dabrafenib in combination with trametinib versus competing adjuvant therapies for high-risk melanoma, J Comp Eff Res, 2019; 8: 1349-1363.
- 385) Blank CU, Rozeman EA, Fanchi LF, et al: Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma, Nat Med, 2018; 24: 1655-1661
- 386) Versluis JM, Menzies AM, Sikorska K, et al: Survival update of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma in the OpACIN and OpACIN-neo trials, Ann Oncol, 2023; 34: 420-430.
- 387) Amaria RN, Prieto PA, Tetzlaff MT, et al: Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial, Lancet Oncol, 2018; 19: 181-193.
- 388) Rozeman EA, Hoefsmit EP, Reijers ILM, et al: Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma, Nat Med, 2021; 27: 256-263.
- 389) Reijers ILM, Rao D, Versluis JM, et al: IFN-gamma signature enables selection of neoadjuvant treatment in

- patients with stage III melanoma, J Exp Med, 2023; 220: e20221952.
- 390) Amaria RN, Reddy SM, Tawbi HA, et al: Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma, Nat Med, 2018; 24: 1649-1654.
- 391) Zijlker LP, van der Burg SJC, Blank CU, et al: Surgical outcomes of lymph node dissections for stage III melanoma after neoadjuvant systemic therapy are not inferior to upfront surgery, Eur J Cancer, 2023; 185: 131-
- 392) Rozeman EA, Menzies AM, van Akkooi ACJ, et al: Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial, Lancet Oncol, 2019; 20: 948-960.
- 393) Rozeman EA, Reijers ILM, Hoefsmit EP, et al: Twentyfour months RFS and updated toxicity data from OpACIN-neo: A study to identify the optimal dosing schedule of neoadjuvant ipilimumab (IPI) and nivolumab (NIVO) in stage III melanoma, J Clin Oncol, 2020; 38 (Suppl): 10015.
- 394) Long GV, Carlino MS, Au-Yeung G, et al: NeoTrio: Randomized trial of neoadjuvant (NAT) pembrolizumab (Pembro) alone, in sequence (SEQ) with, or concurrent (CON) with dabrafenib plus trametinib (D+T) in resectable BRAF-mutant stage III melanoma to determine optimal combination of therapy, J Clin Oncol, 2022; 40 (Suppl): 9503.
- 395) Ho J, Mattei J, Tetzlaff M, et al: Neoadjuvant checkpoint inhibitor immunotherapy for resectable mucosal melanoma, Front Oncol, 2022; 12: 1001150.
- 396) Versluis JM, Reijers ILM, Rozeman EA, et al: Neoadjuvant ipilimumab plus nivolumab in synchronous clinical stage III melanoma, Eur J Cancer, 2021; 148: 51-57.
- 397) Reijers ILM, Menzies AM, van Akkooi ACJ, et al: Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial, Nat Med, 2022; 28: 1178-1188.
- 398) Sharon CE, Tortorello GN, Ma KL, et al: Long-term outcomes to neoadjuvant pembrolizumab based on pathological response for patients with resectable stage III/ IV cutaneous melanoma, Ann Oncol, 2023; 34: 806-812.
- 399) Huang AC, Orlowski RJ, Xu X, et al: A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma, Nat Med, 2019; 25: 454-461.
- 400) Long GV, Saw RPM, Lo S, et al: Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAF (V600) mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial, Lancet Oncol, 2019; 20: 961-971.
- 401) Eroglu Z, Eatrides J, Naqvi SMH, et al: Neoadjuvant BRAF-targeted therapy in regionally advanced and oligometastatic melanoma, Pigment Cell Melanoma Res, 2020; 33: 86-95.

- 402) Czarnecka AM, Ostaszewski K, Borkowska A, et al: Efficacy of Neoadjuvant Targeted Therapy for Borderline Resectable III B-D or IV Stage BRAF (V600) Mutation-Positive Melanoma, Cancers (Basel), 2021; 14: 110
- 403) Blankenstein SA, Rohaan MW, Klop WMC, et al: Neoadjuvant Cytoreductive Treatment With BRAF/MEK Inhibition of Prior Unresectable Regionally Advanced Melanoma to Allow Complete Surgical Resection, REDUCTOR: A Prospective, Single-arm, Open-label Phase II Trial, Ann Surg, 2021; 274: 383–389.
- 404) Zippel D, Markel G, Shapira-Frommer R, et al: Perioperative BRAF inhibitors in locally advanced stage III melanoma, J Surg Oncol, 2017; 116: 856–861.
- 405) Sloot S, Zager JS, Kudchadkar RR, et al: BRAF inhibition for advanced locoregional BRAF V600E mutant melanoma: a potential neoadjuvant strategy, Melanoma Res, 2016; 26: 83–87.
- 406) Tetzlaff MT, Adhikari C, Lo S, et al: Histopathological features of complete pathological response predict recurrence-free survival following neoadjuvant targeted therapy for metastatic melanoma, Ann Oncol, 2020; 31: 1569–1579.
- 407) Gorry C, McCullagh L, O'Donnell H, et al: Neoadjuvant treatment for stage III and IV cutaneous melanoma, Cochrane Database Syst Rev, 2023; 1: CD012974.
- 408) Boulva K, Apte S, Yu A, et al: Contemporary Neoadjuvant Therapies for High-Risk Melanoma: A Systematic Review, Cancers (Basel), 2021; 13: 1905.
- 409) Lian B, Li Z, Wu N, et al: Phase II clinical trial of neoadjuvant anti-PD-1 (toripalimab) combined with axitinib in resectable mucosal melanoma, Ann Oncol, 2024; 35: 211–220.
- 410) Creagan ET, Cupps RE, Ivins JC, et al: Adjuvant radiation therapy for regional nodal metastases from malignant melanoma: a randomized, prospective study, Cancer, 1978; 42: 2206–2210.
- 411) Hodi FS, Chesney J, Pavlick AC, et al: Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial, Lancet Oncol, 2016; 17: 1558–1568.
- 412) Uhara H, Kiyohara Y, Uehara J, et al: Five-year survival with nivolumab in previously untreated Japanese patients with advanced or recurrent malignant melanoma, J Dermatol, 2021; 48: 592–599.
- 413) Lebbe C, Meyer N, Mortier L, et al: Evaluation of Two Dosing Regimens for Nivolumab in Combination With Ipilimumab in Patients With Advanced Melanoma: Results From the Phase IIIb/IV CheckMate 511 Trial, J Clin Oncol, 2019; 37: 867–875.
- 414) Long GV, Flaherty KT, Stroyakovskiy D, et al: Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study, Ann Oncol, 2017; 28: 1631–1639.

- 415) Ascierto PA, Dreno B, Larkin J, et al: 5-Year Outcomes with Cobimetinib plus Vemurafenib in BRAFV600 Mutation-Positive Advanced Melanoma: Extended Follow-up of the coBRIM Study, Clin Cancer Res, 2021; 27: 5225–5235.
- 416) Dummer R, Flaherty KT, Robert C, et al: COLUMBUS 5-Year Update: A Randomized, Open-Label, Phase III Trial of Encorafenib Plus Binimetinib Versus Vemurafenib or Encorafenib in Patients With BRAF V600-Mutant Melanoma, J Clin Oncol, 2022; 40: 4178–4188.
- 417) Dummer R, Ascierto PA, Gogas HJ, et al: Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial, Lancet Oncol, 2018; 19: 603–615.
- 418) Larkin J, Chiarion-Sileni V, Gonzalez R, et al: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma, N Engl J Med, 2015; 373: 23–34.
- 419) Cohen JV, Tawbi H, Margolin KA, et al: Melanoma central nervous system metastases: current approaches, challenges, and opportunities, Pigment Cell Melanoma Res, 2016; 29: 627–642.
- 420) Sampson JH, Carter JH, Jr, Friedman AH, Seigler HF: Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma, J Neurosurg, 1998; 88: 11–20.
- 421) Fife KM, Colman MH, Stevens GN, et al: Determinants of outcome in melanoma patients with cerebral metastases, J Clin Oncol, 2004; 22: 1293–1300.
- 422) Mendez IM, Del Maestro RF: Cerebral metastases from malignant melanoma, Can J Neurol Sci, 1988; 15: 119– 123.
- 423) Patel PM, Suciu S, Mortier L, et al: Extended schedule, escalated dose temozolomide versus dacarbazine in stage IV melanoma: final results of a randomised phase III study (EORTC 18032), Eur J Cancer, 2011; 47: 1476– 1483
- 424) Robert C, Karaszewska B, Schachter J, et al: Improved overall survival in melanoma with combined dabrafenib and trametinib, N Engl J Med, 2015; 372: 30–39.
- 425) Dutriaux C, Robert C, Grob JJ, et al: An open label, non-randomised, phase IIIb study of trametinib in combination with dabrafenib in patients with unresectable (stage III) or distant metastatic (stage IV) BRAF V600-mutant melanoma: A subgroup analysis of patients with brain metastases, Eur J Cancer, 2022; 175: 254–262.
- 426) Kluger HM, Chiang V, Mahajan A, et al: Long-Term Survival of Patients With Melanoma With Active Brain Metastases Treated With Pembrolizumab on a Phase II Trial, J Clin Oncol, 2019; 37: 52–60.
- 427) Schadendorf D, Ascierto PA, Haanen J, et al: Safety and efficacy of nivolumab in challenging subgroups with advanced melanoma who progressed on or after ipilimumab treatment: A single-arm, open-label, phase II study (CheckMate 172), Eur J Cancer, 2019; 121: 144–153.

- 428) Dummer R, Goldinger SM, Turtschi CP, et al: Vemurafenib in patients with BRAF (V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study, Eur J Cancer, 2014; 50: 611–621.
- 429) Long GV, Trefzer U, Davies MA, et al: Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial, Lancet Oncol, 2012; 13: 1087–1095.
- 430) Falchook GS, Long GV, Kurzrock R, et al: Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial, Lancet, 2012; 379: 1893–1901.
- 431) Arance AM, Berrocal A, Lopez-Martin JA, et al: Safety of vemurafenib in patients with BRAF (V600) mutated metastatic melanoma: the Spanish experience, Clin Transl Oncol, 2016; 18: 1147–1157.
- 432) McArthur GA, Maio M, Arance A, et al: Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study, Ann Oncol, 2017; 28: 634–641.
- 433) Wada S, Ogata D, Kashihara T, et al: A single-center retrospective analysis of prognoses in patients with melanoma brain metastases and effectiveness of treatment in Japan, Cancer medicine, 2023; 12: 21933–21943.
- 434) Keilholz U, Ascierto PA, Dummer R, et al: ESMO consensus conference recommendations on the management of metastatic melanoma: under the auspices of the ESMO Guidelines Committee, Ann Oncol, 2020; 31: 1435–1448
- 435) Franklin C, Mohr P, Bluhm L, et al: Impact of radiotherapy and sequencing of systemic therapy on survival outcomes in melanoma patients with previously untreated brain metastasis: a multicenter DeCOG study on 450 patients from the prospective skin cancer registry ADOREG, Journal for immunotherapy of cancer, 2022; 10: e004509.
- 436) Kim PH, Suh CH, Kim HS, et al: Immune Checkpoint Inhibitor with or without Radiotherapy in Melanoma Patients with Brain Metastases: A Systematic Review and Meta-Analysis, Korean J Radiol, 2021; 22: 584–595.
- 437) Yin G, Guo W, Huang Z, Chen X: Efficacy of radiotherapy combined with immune checkpoint inhibitors in patients with melanoma: a systemic review and metaanalysis, Melanoma Res, 2022; 32: 71–78.
- 438) Babcock B, Rodrigues M, Kearns D, et al: Improved Survival with Immunotherapy but Lack of Synergistic Effect with Radiation for Stage IV Melanoma of the Head and Neck, Am Surg, 2019; 85: 1118–1124.
- 439) de Castro DG, Teixeira CHA, Gondim GRM, et al: Impact of cranial stereotactic radiotherapy associated with immunotherapy with nivolumab and ipilimumab on overall survival in patients with melanoma brain metastases: a real-world evidence, Clin Transl Oncol, 2022; 24: 1828–1830.

- 440) Knispel S, Stang A, Zimmer L, et al: Impact of a preceding radiotherapy on the outcome of immune checkpoint inhibition in metastatic melanoma: a multicenter retrospective cohort study of the DeCOG, Journal for immunotherapy of cancer, 2020; 8: e000395.
- 441) Koller KM, Mackley HB, Liu J, et al: Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone, Cancer Biol Ther, 2017; 18: 36–42.
- 442) Lee J, Chang JS, Roh MR, et al: Clinical Outcomes of Immune Checkpoint Blocker Therapy for Malignant Melanoma in Korean Patients: Potential Clinical Implications for a Combination Strategy Involving Radiotherapy, Cancer Res Treat, 2020; 52: 730–738.
- 443) Mowery YM, Patel K, Chowdhary M, et al: Retrospective analysis of safety and efficacy of anti-PD-1 therapy and radiation therapy in advanced melanoma: A bi-institutional study, Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology, 2019; 138: 114–120.
- 444) Saiag P, Molinier R, Roger A, et al: Efficacy of Large Use of Combined Hypofractionated Radiotherapy in a Cohort of Anti-PD-1 Monotherapy-Treated Melanoma Patients, Cancers (Basel), 2022; 14: 4069.
- 445) Umeda Y, Yoshikawa S, Kiniwa Y, et al: Real-world efficacy of anti-PD-1 antibody or combined anti-PD-1 plus anti-CTLA-4 antibodies, with or without radiotherapy, in advanced mucosal melanoma patients: A retrospective, multicenter study, Eur J Cancer, 2021; 157: 361–372.
- 446) Larkin J, Chiarion-Sileni V, Gonzalez R, et al: Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma, N Engl J Med, 2019; 381: 1535– 1546.
- 447) Schachter J, Ribas A, Long GV, et al: Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006), Lancet, 2017; 390: 1853– 1862.
- 448) Robert C, Grob JJ, Stroyakovskiy D, et al: Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma, N Engl J Med, 2019; 381: 626–636.
- 449) Kato J, Namikawa K, Uehara J, et al: Prognoses of patients with melanoma who continue/discontinue antiprogrammed death-1 therapy after achieving a complete response in a real-world setting: a multicentre retrospective study, Br J Dermatol, 2022; 187: 594–596.
- 450) Dimitriou F, Lo SN, Tan AC, et al: FDG-PET to predict long-term outcome from anti-PD-1 therapy in metastatic melanoma, Ann Oncol, 2022; 33: 99–106.
- 451) Bédouelle E, Nguyen JM, Varey E, Khammari A, Dreno B: Should Targeted Therapy Be Continued in BRAF-Mutant Melanoma Patients after Complete Remission? Dermatology, 2022; 238: 517–526.
- 452) Stege H, Haist M, Schultheis M, et al: Discontinuation of BRAF/MEK-Directed Targeted Therapy after Com-

- plete Remission of Metastatic Melanoma-A Retrospective Multicenter ADOReg Study, Cancers (Basel), 2021; 13: 2312.
- 453) van Zeijl MCT, van den Eertwegh AJM, Wouters M, et al: Discontinuation of anti-PD-1 monotherapy in advanced melanoma-Outcomes of daily clinical practice, Int J Cancer, 2022; 150: 317–326.
- 454) Asher N, Israeli-Weller N, Shapira-Frommer R, et al: Immunotherapy Discontinuation in Metastatic Melanoma: Lessons from Real-Life Clinical Experience, Cancers (Basel), 2021; 13: 3074.
- 455) Rubatto M, Fava P, Stanganelli I, et al: Discontinuation of anti-PD1 in advanced melanoma: an observational retrospective study from the Italian Melanoma Intergroup, Eur J Cancer, 2023; 187: 25–35.
- 456) Nordstrom BL, Hamilton M, Collins JM, et al: Treatment patterns and outcomes following disease progression on anti-PD-1 therapies for advanced melanoma, Future Oncol, 2022; 18: 1343–1355.
- 457) Long GV, Weber JS, Larkin J, et al: Nivolumab for Patients With Advanced Melanoma Treated Beyond Progression: Analysis of 2 Phase 3 Clinical Trials, JAMA Oncol, 2017; 3: 1511–1519.

- 458) Beaver JA, Hazarika M, Mulkey F, et al: Patients with melanoma treated with an anti-PD-1 antibody beyond RECIST progression: a US Food and Drug Administration pooled analysis, Lancet Oncol, 2018; 19: 229–239.
- 459) Pinto CA, Liu XY, Li XY, Scherrer E, Kalabis M: Treatment and overall survival among anti-PD-1-exposed advanced melanoma patients with evidence of disease progression, Immunotherapy-Uk, 2022; 14: 201–214.
- 460) Scholtens A, Foppen MHG, Blank CU, van Thienen JV, van Tinteren H, Haanen JB: Vemurafenib for V600 mutated advanced melanoma: Results of treatment beyond progression, Eur J Cancer, 2015; 51: 642–652.
- 461) Chan MMK, Haydu LE, Menzies AM, et al: The Nature and Management of Metastatic Melanoma After Progression on BRAF Inhibitors: Effects of Extended BRAF Inhibition, Cancer, 2014; 120: 3142–3153.
- 462) Robert C, Schadendorf D, Messina M, Hodi FS, O'Day S; MDX010-20 Investigators: Efficacy and Safety of Retreatment with Ipilimumab in Patients with Pretreated Advanced Melanoma Who Progressed after Initially Achieving Disease Control, Clinical Cancer Research, 2013; 19: 2232–2239.